DOI QR코드

DOI QR Code

Development of Optimal Binder for Recycling Cold Asphalt Mixture

재활용 상온아스콘 혼합물의 최적 결합재 개발

  • Received : 2014.05.29
  • Accepted : 2014.07.02
  • Published : 2014.08.10

Abstract

This study was carried out to design the optimum mixing ratio of aggregate, cyclic aggregate, and binder (moisture, emulsified asphalt, and emulsion type additives) and produce recycling cold asphalt paving mixture satisfying site work standard. The cyclic aggregate satisfying KS F 2572 was collected from waste asphalt by adequate processing. As the moisture content increased, the shearing strength was decreased. The maximum marshall stability was shown at the 3.0 wt% moisture content. So the optimum moisture content was 3.0 wt%. The marshall stability and flow value with the amount of emulsified asphalt was satisfied in the range of 0.5~2.5 wt%, and the porosity was satisfied in the range of 0.7~2.5 wt%. So the optimum amount of emulsified asphalt was 1.6 wt%. The optimum amount of emulsion type additive was 0.1 wt% in the light of marshall stability and degree of saturation of recycling cold asphalt mixture.

폐아스팔트를 적정 처리하여 KS F 2572 규격을 만족하는 아스팔트용 순환골재를 회수한 후 신골재와 결합재(수분+유화아스팔트+에멀젼계 재생첨가제)의 최적의 혼합비율을 설계하여 현장 시공규격에 맞는 재활용 상온아스콘 혼합물을 생산하고자 하였다. 결합재의 최적 혼합비율 결정을 위한 실험 결과 수분함량이 증가함에 따라 전단강도는 감소하였으며, 수분함량이 3.0 wt%일 때 마샬안정도가 최대값을 보였다. 두 결과를 토대로 최적 수분함량은 3.0 wt%로 설정하였다. 또한 유화아스팔트의 함량에 따른 마샬안정도와 흐름치는 첨가량 0.5~2.5 wt%의 범위에서 모두 기준에 만족하였고, 공극률은 0.7~2.5 wt%의 범위에서 만족하였으므로 최적 첨가량은 공통으로 만족된 범위인 0.7~2.5 wt%의 가운데 지점인 1.6 wt%로 설정하였다. 재활용 상온아스콘 혼합물용 결합재의 최적 에멀젼계 첨가제 함량은 재활용 상온아스콘 혼합물의 마샬안정도와 포화도를 고려하여 0.1 wt%로 설정하였다.

Keywords

References

  1. Y. J. Kim, H. D. Lee, and H. Michael, Dynamic modulus and repeated load tests of cold in-place recycling mixtures using foamed asphalt, J. Mater. Civ. Eng., 21(6), 279-285 (2009). https://doi.org/10.1061/(ASCE)0899-1561(2009)21:6(279)
  2. J. Xu, S. Huang, Y. Qin, and F. Li, The impact of cement contents on the properties of asphalt emulsion stabilized cold recycling mixtures, Int. J. Pavement Res. Technol., 4(1), 48-55 (2011).
  3. K. E. Min and H. M. Jeong, Structures and properties of semi-blown petroleum asphalt, Appl. Chem. Eng., 22(6), 664-671 (2011).
  4. Y. H. Park, G. K. Kim, J. K. Nor, and J. K. Ha, A study for implementation of density measurement equipment for asphalt pavement based on the electromagnetic capacitance, International Journal of Contents, 6(4), 39-42 (2010). https://doi.org/10.5392/IJoC.2010.6.4.039
  5. K. H. Moon, A. C. Falchetto, M. Marasteanu, and M. Turos, Using recycled asphalt materials as an alternative material source in asphalt pavements, KSCE J. Civil Eng., 18(1), 149-159 (2014). https://doi.org/10.1007/s12205-014-0211-1
  6. S. D. Capitao, L. G. Picado-Santos, and F. Martinho, Pavement engineering materials : Review on the use of warm-mix asphalt, Constr. Build. Mater., 36, 1016-1024 (2012). https://doi.org/10.1016/j.conbuildmat.2012.06.038
  7. F. Xiao, S. N. Amirkhanian, J. Shen, and B. Putman, Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures, Constr. Build. Mater., 23(2), 1028-1034 (2009). https://doi.org/10.1016/j.conbuildmat.2008.05.002
  8. S. Hesami, H. Roshani, G. H. Hamedi, and A. Azarhoosh, Evaluate the mechanism of the effect of hydrated lime on moisture damage of warm mix asphalt, Constr. Build. Mater., 47, 935-941 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.079
  9. M. C. Rubio, G. Martinez, L. Baena, and F. Moreno, Warm mix asphalt: an overview, J. Clean. Prod., 24, 76-84 (2012). https://doi.org/10.1016/j.jclepro.2011.11.053
  10. L. D. Poulikakos, S. dos Santos, M. Bueno, S. Kuentzel, M. Hugener, and M. N. Partl, Influence of short and long term aging on chemical, microstructural and macro-mechanical properties of recycled asphalt mixtures, Constr. Build. Mater., 51, 414-423 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.004
  11. L. Mo, X. Li, X. Fang, M. Huurman, and S. Wu, Laboratory investigation of compaction characteristics and performance of warm mix asphalt containing chemical additives, Constr. Build. Mater., 37, 239-247 (2012). https://doi.org/10.1016/j.conbuildmat.2012.07.074
  12. B. Sengoz and J. Oylumluoglu, Utilization of recycled asphalt concrete with different warm mix asphalt additives prepared with different penetration grades bitumen, Constr. Build. Mater., 45, 173-183 (2013). https://doi.org/10.1016/j.conbuildmat.2013.03.097
  13. D. A. Marisa, C. G. Joao, and M. de L. Antunes, Mix design considerations for warm mix recycled asphalt with bitumen emulsion, Constr. Build. Mater., 28(1), 687-693 (2012). https://doi.org/10.1016/j.conbuildmat.2011.10.053
  14. A. E. Abu El-Maaty Behiry, Laboratory evaluation of resistance to moisture damage in asphalt mixtures, Ain Shams Eng. J., 4(3), 351-363 (2013). https://doi.org/10.1016/j.asej.2012.10.009
  15. X. Yu, Y. Wang, and Y. Luo, Impacts of water content on rheological properties and performance-related behaviors of foamed warm-mix asphalt, Constr. Build. Mater., 48, 203-209 (2013). https://doi.org/10.1016/j.conbuildmat.2013.06.018
  16. Y. H. Hong and Y. J. Kwon, Recycling of schingle waste for pavement asphalt concrete, Appl. Chem. Eng., 17(6), 614-618 (2006).

Cited by

  1. Performance Evaluation of High-RAP Asphalt Mixtures using Rapid-Setting Polymer-Modified Asphalt Emulsion vol.17, pp.2, 2015, https://doi.org/10.7855/IJHE.2015.17.2.021
  2. 폐아스콘 순환골재 혼입율에 따른 알칼리활성화 채움재 상온 재생 아스팔트 혼합물의 특성 vol.6, pp.3, 2014, https://doi.org/10.14190/jrcr.2018.6.3.199