The effect of patient position on dose in radiation therapy of liver cancer

환자 자세가 간의 방사선 치료 시 선량에 미치는 영향

  • Jung, Won Seok (Department of Radiation Oncology, Kyunghee College Hospital) ;
  • Kim, Ju Ho (Department of Radiation Oncology, Yonsei Cancer Center) ;
  • Kim, Young Jae (Department of Radiological Technology, Daegu Health College) ;
  • Shin, Ryung Mi (Department of Radiation Oncology, Kyunghee College Hospital) ;
  • Oh, Jeong Hun (Department of Radiation Oncology, Kyunghee College Hospital) ;
  • Jeong, Geon A (Department of Radiation Oncology, Kyunghee College Hospital) ;
  • Jo, Jun Young (Department of Radiation Oncology, Kyunghee College Hospital) ;
  • Kim, Gi Chul (Department of Radiation Oncology, Kyunghee College Hospital) ;
  • Choi, Tae Kyu (Department of Radiation Oncology, Kyunghee College Hospital)
  • 정원석 (경희의료원 방사선종양학과) ;
  • 김주호 (연세암센터 방사선종양학과) ;
  • 김영재 (대구보건대학교 방사선과) ;
  • 신령미 (경희의료원 방사선종양학과) ;
  • 오정훈 (경희의료원 방사선종양학과) ;
  • 정건아 (경희의료원 방사선종양학과) ;
  • 조준영 (경희의료원 방사선종양학과) ;
  • 김기철 (경희의료원 방사선종양학과) ;
  • 최태규 (경희의료원 방사선종양학과)
  • Received : 2014.03.21
  • Accepted : 2014.04.30
  • Published : 2014.06.30

Abstract

Purpose : To analyze tumor's movement and volume change from changing position in order to minimize movement caused by breathing. Materials and Methods : We conducted survey of 14 patients with HCC(Hepatocellular carcinoma). Patient immobilization device was made in two ways(Supine position, prone position) and from image acquisition, tumor's movement, volume and dose are analyzed. Results : The mean movement of target(LR, Left-right) in supine position and prone position was $2.76{\pm}1.25mm$, $2.21{\pm}0.93mm$. AP(Anterior-posterior) and SI(Superior-inferior) was $4.02{\pm}1.63mm$, $11.56{\pm}3.08mm$, $3.36{\pm}1.17mm$, $7.45{\pm}1.96mm$. Treatment volume was decreased and normal liver volume was increased in prone position. Conclusion : We could reduce the margin of the treatment volume by minimizing the movement of liver caused by breathing. Especially in prone position, it is considered to be able to decrease the movement of the liver and increase normal liver volume.

목 적 : 간암 치료 시 호흡으로 인한 움직임을 최소화하기 위해 환자 체위 변화에서 종양의 움직임과 용적 변화를 분석하고자 하였다. 대상 및 방법 : 간 세포암종(Hepatocellular Carcinoma) 환자 14명의 환자를 대상으로 시행하였다. 바로 누운 자세(Supine position)와 엎드린 자세(Prone position)에서 2가지 방법으로 환자 고정기구를 제작하고 영상을 획득하여 간 종양의 움직임과 용적 그리고 선량을 분석하였다. 결 과 : 바로 누운 자세(Supine position)와 엎드린 자세(Prone position) 에서 표적의 왼쪽-오른쪽(LR, Left-right) 움직임은 평균 $2.76{\pm}1.25mm$, $2.21{\pm}0.93mm$이고, 앞-뒤(AP, Anterior-posterior)와 상하(SI. Superior-inferior) 방향의 움직임은 각각 $4.02{\pm}1.63mm$, $11.56{\pm}3.08mm$, $3.36{\pm}1.17mm$, $7.45{\pm}1.96mm$이었다. 이를 이용한 엎드린 자세(Prone position)에서 치료 용적(Treatment volume)은 감소하였고, 이에 따라 정상간 용적은 증가 하였다. 결 론 : 호흡에 의한 간의 움직임을 최소화함으로써 치료 용적(Treatment volume)의 경계여유를 감소시킬 수 있었다. 즉 환자 자세 변화 특히 엎드린(Prone) 자세는 간의 움직임을 감소 시켜주고 정상 간의 용적을 증가 시킬 수 있을 것으로 사료된다.

Keywords

References

  1. Lee S, Seong JS, Kim YB, et al. Use of respiratory motion reduction device(RRD) in treatment of hepatoma. J Korean Soc Ther Radiol Oncol 2001; 19(4): 319-326
  2. Kim YS, Park SH, Ahn SD, et al. Differences in abdominal organ movement between supine and prone positions measured using four-dimensional computed tomograpy. Radiother Oncol 2007; 85: 424- 428 https://doi.org/10.1016/j.radonc.2007.10.031
  3. International Commission on Radiation Units and Measurements, Report No. 62: Prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). Bethesda: ICRU. 1999
  4. Kvinnsland Y, Muren LP. The impact of organ motion on intestine doses and complication probabilities in radiotherapy of bladder cancer. Radiother Oncol 2005; 76: 43-7 https://doi.org/10.1016/j.radonc.2005.06.007
  5. Li XA, Qi XS, Pitterle M, et al. Interfractional variation in patient setup and anatomic change assessed by daily tomotherapy. Int J Radiat Oncol Biol Phys 2007; 68: 581-91 https://doi.org/10.1016/j.ijrobp.2006.12.024
  6. Rardall KT, James MB, Lon HM, et al. Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumor. Int J Radiat Oncol Biol Phys 1997; 38: 613-617 https://doi.org/10.1016/S0360-3016(97)00009-6
  7. John H. Heinzerling, John F. Anderson, Lech Papiez, et al. Four-dimensional computed tomography scan analysis of tumor and organ motion at varying levels of abdominal compression during stereotactic treatment of lung and liver. Int J Radiat Oncol Biol Phys 2008; 70: 1517-1578
  8. Mian Xi, Meng-Zhong Liu, Li Zhang, et al. How many sets of 4DCT images are sufficient to determine internal target volume for liver radiotherapy?. Radiother Oncol 2009; 92: 255-259 https://doi.org/10.1016/j.radonc.2009.05.007
  9. David P. Gierga, George T. Y. Chen, Jong H. Kung, et al. Quantification of respiration-induced abdominal tumor motion and its impact on IMRT dose distribution. Int J Radiat Oncol Biol Phys 2004; 58: 1584-1595 https://doi.org/10.1016/j.ijrobp.2003.09.077
  10. Eike Rietzel, George T. Y. Chen, Noah C. Choi, et al. Four-dimensional image-based treatment planning: Target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys 2005; 61: 1535-1550 https://doi.org/10.1016/j.ijrobp.2004.11.037
  11. Takashi Aruga, Jun Itami, Moriyo Aruga, et al. Target volume definition for upper abdominal irradiation using CT scans obtained during inhale and exhale phases. Int J Radiat Oncol Biol Phys 2000; 48: 465-469 https://doi.org/10.1016/S0360-3016(00)00610-6
  12. Bradley JD, Nofal AN, El Naqa IM, et al. Comparison of helical, maximum intensity projection (MIP), and averaged intensity(AI) 4D CT imaging for stereotactic body radiation therapy(SBRT) planning in lung cancer. Radiother Oncol 2006; 81: 264-8 https://doi.org/10.1016/j.radonc.2006.10.009
  13. Guckenberger M, Wilbert J, Meyer J, et al. Is a single respiratory correlated 4D-CT study sufficient for evaluation of breathing motion? Int J Radiat Oncol Biol Phys 2007; 67: 1352-9 https://doi.org/10.1016/j.ijrobp.2006.11.025
  14. De Ne ve W, Va n de l He uve l F, De Beukeleer M, etal. Routine clinical on- line portal imaging followed by immediate field adjustment using a tele- controlled patient couch. Radiother Oncol 1992; 24: 45- 54 https://doi.org/10.1016/0167-8140(92)90353-V
  15. Ha nle y J, Lumley M, Mage ras G, et a l. Measurements of patient positioning errors in threedimensional conformal radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 1997; 37: 435-444 https://doi.org/10.1016/S0360-3016(96)00526-3
  16. Edward D. Brandner, Andrew Wu, Hungcheng Chen, et al. Abdominal organ motion measured using 4D CT. Int J Radiat Oncol Biol Phys 2006; 65: 554-560 https://doi.org/10.1016/j.ijrobp.2005.12.042
  17. James D. Brierley, Laura A. Dawson, Elliott Sampson, et al. Rectal motion in patients receiving preoperative radiotherapy for carcinoma of the rectum. Int J Radiation Oncology Biol Phys 2011; 80(1): 97-102 https://doi.org/10.1016/j.ijrobp.2010.01.042
  18. Amish P. Shah, Patrick A. Kupelian, Twyla R. Willoughby, et al. An evaluation of intrafraction motion of the prostate in the prone and supine positions using electromagnetic tracking. Radiother Oncol 2011; 99: 37-43 https://doi.org/10.1016/j.radonc.2011.02.012
  19. Capocaccia R, Sant M, Berrino F, et al. Hepatocellular carcinoma: trends of Incidence and survival in Europe and United State at the end of the 20thcentury. AmJGastroenterol2007;102:1661-1670
  20. Weiss PH, Baker JM, Potchen EJ. Assessment of hepatic respiratory excursion. J Nucl Med 1972; 13: 758-9
  21. Balter JM, Ten Haken RK, Lawrence TS, et al. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys 1996; 36: 167?-74
  22. Langen KM, Jones DT. Organ motion and its management. Int J Radiat Oncol Biol Phys 2001; 50: 265-78 https://doi.org/10.1016/S0360-3016(01)01453-5