Analysis of the major factors of influence on the conditions of the Intensity Modulated Radiation Therapy planning optimization in Head and Neck

두경부 세기견조방사선치료계획 최적화 조건에서 주요 인자들의 영향 분석

  • Received : 2014.03.21
  • Accepted : 2014.04.30
  • Published : 2014.06.30

Abstract

Purpose : To derive the most appropriate factors by considering the effects of the major factors when applied to the optimization algorithm, thereby aiding the effective designing of a ideal treatment plan. Materials and Methods : The eclipse treatment planning system(Eclipse 10.0, Varian, USA) was used in this study. The PBC (Pencil Beam Convolution) algorithm was used for dose calculation, and the DVO (Dose Volume Optimizer 10.0.28) Optimization algorithm was used for intensity modulated radiation therapy. The experimental group consists of patients receiving intensity modulated radiation therapy for the head and neck cancer and dose prescription to two planned target volume was 2.2 Gy and 2.0 Gy simultaneously. Treatment plan was done with inverse dose calculation methods utilizing 6 MV beam and 7 fields. The optimal algorithm parameter of the established plan was selected based on volume dose-priority(Constrain), dose fluence smooth value and the impact of the treatment plan was analyzed according to the variation of each factors. Volume dose-priority determines the reference conditions and the optimization process was carried out under the condition using same ratio, but different absolute values. We evaluated the surrounding normal organs of treatment volume according to the changing conditions of the absolute values of the volume dose-priority. Dose fluence smooth value was applied by simply changing the reference conditions (absolute value) and by changing the related volume dose-priority. The treatment plan was evaluated using Conformal Index, Paddick's Conformal Index, Homogeneity Index and the average dose of each organs. Results : When the volume dose-priority values were directly proportioned by changing the absolute values, the CI values were found to be different. However PCI was $1.299{\pm}0.006$ and HI was $1.095{\pm}0.004$ while D5%/D95% was $1.090{\pm}1.011$. The impact on the prescribed dose were similar. The average dose of parotid gland decreased to 67.4, 50.3, 51.2, 47.1 Gy when the absolute values of the volume dose-priority increased by 40,60,70,90. When the dose smooth strength from each treatment plan was increased, PCI value increased to $1.338{\pm}0.006$. Conclusion : The optimization algorithm was more influenced by the ratio of each condition than the absolute value of volume dose-priority. If the same ratio was maintained, similar treatment plan was established even if the absolute values were different. Volume dose-priority of the treatment volume should be more than 50% of the normal organ volume dose-priority in order to achieve a successful treatment plan. Dose fluence smooth value should increase or decrease proportional to the volume dose-priority. Volume dose-priority is not enough to satisfy the conditions when the absolute value are applied solely.

목 적 : 최적화 알고리즘에 적용되는 최적화 인자들의 영향을 고려하여, 가장 적합한 인자 값을 도출함으로써 이상적인 치료계획을 쉽게 설계할 수 있도록 하고자 한다. 대상 및 방법 : 본 연구의 세기조절방사선치료에서 선량계산 알고리즘은 PBC(Pencil Beam Convolution)이고, 최적화 알고리즘은 DVO(Dose Volume Optimizer 10.0.28)이다. 두경부 환자의 세기조절방사선치료에서 치료계획용적의 처방선량은 동시에 2.2 Gy와 2.0 Gy가 될 수 있도록 하였다. 치료계획은 6 MV, 7개의 조사야로 역선량계산방법으로 수립하였다. 최적화 알고리즘 인자는 용적선량-조건강도(Priority, Constrain), 선량부 드럼강도(Smooth)로 선정하고, 각 인자들의 변화량에 따른 치료계획의 영향을 분석하였다. 용적선량-조건강도는 기준 조건강도를 정하고, 비율은 같지만 절대 값은 다른 최적화 과정을 실시하였다. 또한 조건강도의 절대 값에 변화에 따른 치료용적과 주변 정상장기들을 평가하였다. 선량부드럼강도는 기준 조건의 단순 변화와 용적선량-조건강도와 관련시킨 변화를 치료계획에 반영시켰다. 치료계획은 처방선량지수(Conformal Index, CI), 처방선량포함지수(Paddick's Conformal Index, PCI), 선량균질지수(Homogeneity Index, HI)와 각 장기의 평균선량으로 평가하였다. 결 과 : 용적선량-조건강도의 비율을 동일하게 하고 절대 값을 변화 시켰을 때 CI값은 다르지만, PCI는 $1.299{\pm}0.006$, HI는 $1.095{\pm}0.004$, D5%/D95%는 $1.090{\pm}1.011$으로 처방선량에 대한 영향은 유사하였다. 이하선의 평균선량은 용적선량-조건강도의 절대 값이 40, 60, 70, 90으로 증가될 때, 67.4, 50.3, 51.2, 47.1 Gy로 감소하였다. 각각의 치료계획에서 선량부드럼강도를 증가시켰을 때, PCI는 $1.338{\pm}0.006$로 증가된 값을 보였다. 결 론 : 용적선량-조건강도는 절대적인 값보다 각 조건의 비율에 따라 최적화 알고리즘에 영향을 주었다. 절대 값이 다르더라도 같은 비율을 유지하면 유사한 치료계획이 수립되었다. 성공적인 치료계획을 수립하기 위해 특히 보호해야할 정상장기의 용적선량-조건강도는 치료용적의 용적선량-조건강도의 50%이상 되어야한다. 선량부드럼강도는 용적선량-조건강도에 따라 비례하여 증가하거나 감소하여야 한다. 단순히 절대 값으로 적용하면 용적선량-조건강도는 그 조건을 충분히 만족시키지 못한다.

Keywords

References

  1. Ling CC, Burman C, Chui CS, et al.: Conformal radiation treatment of prostate cancer using inverselyplanned intensity-modulated photon beams produced with dynamic multileaf collimation. International Journal of Radiation Oncology*Biology*Physics 1996; 35 : 721-730. https://doi.org/10.1016/0360-3016(96)00174-5
  2. Xia P, Fu KK, Wong GW, et al.: Comparison of treatment plans involving intensity-modulated radiotherapy for nasopharyngeal carcinoma. International Journal of Radiation Oncology*Biology*Physics 2000; 48 :329-337.
  3. Xing L, Hamilton RJ, Spelbring D, et al.: Fast iterative algorithms for three-dimensional inverse treatment planning. Med Phys 1998; 25 : 1845-1849. https://doi.org/10.1118/1.598374
  4. Andrei Pugachev, Lei Xing : Incorporating prior knowledge into beam orientaton optimization in IMRT. International Journal of Radiation Oncology*Biology*Physics 2002; 54 : 1565-1574. https://doi.org/10.1016/S0360-3016(02)03917-2
  5. Yin Zhang, Michael Merritt : Dose-volume-based IMRT fluence optimization: A fast least-squares approach with differentiability. Linear Algebra and its Applications 2008 ; 428 : 1365-1387. https://doi.org/10.1016/j.laa.2007.09.037
  6. Christopher M. Bragg, Katrina Wingate, John Conway : Clinical implications of the anisotropic analytical algorithm for IMRT treatment planning and verification. Radiotherapy and Oncology 2008 ; 86 : 276-284. https://doi.org/10.1016/j.radonc.2008.01.011
  7. Paddick, I : A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. Journal Neurosurg 2000; 93(Suppl 3) : 219-22.
  8. Charles S Mayo, Marcia M Urie : A systematic benchmark method for analysis and comparison of IMRT treatment planning algorithms. Medical Dosimetry 2003 ; 28 : 235-242. https://doi.org/10.1016/j.meddos.2003.05.002
  9. Klaus Bratengeier, Matthias Guckenberger, J?rgen Meyer, et al.: A comparison between 2-Step IMRT and conventional IMRT planning. Radiotherapy and Oncology 2007 ; 84 : 298-306. https://doi.org/10.1016/j.radonc.2007.06.018
  10. Raef S. Ahmed, Roger Ove, Jun Duan, et al.: Intensity-modulated radiotherapy (IMRT) for carcinoma of the maxillary sinus: A comparison of IMRT planning systems. Medical Dosimetry 2006; 31 : 224-232. https://doi.org/10.1016/j.meddos.2005.08.006