DOI QR코드

DOI QR Code

Adsorption Characteristics of Pb(II) by Manganese Oxide Coated Activated Carbon in Fixed Bed Column Study

망간산화물이 코팅된 활성탄의 납 흡착특성에 관한 칼럼 실험

  • Received : 2014.04.28
  • Accepted : 2014.07.09
  • Published : 2014.08.01

Abstract

Effects of operating parameters on the breakthrough properties of Pb(II) by $Mn_3O_4$ coated activated carbon prepared by supercritical technique were investigated through fixed-bed column experiments. The mass transfer zone and equilibrium adsorption capacity were enhanced about 2.8 times for Pb(II) by $Mn_3O_4$ coating onto activated carbon. Increase of bed height enhanced the residence time of Pb(II) in adsorption zone, giving the higher breakthrough time, mass transfer zone and equilibrium adsorption capacity. Increase of flow rate reduced the residence time and diffusion of Pb(II) in adsorption zone, therefore decreased the equilibrium adsorption capacity. The higher inlet concentration of Pb(II) decreased the breakthrough time and mass transfer zone through the promotion of Pb(II) transfer onto adsorbent.

초임계 조건에서 제조된 망간산화물이 코팅된 활성탄($Mn_3O_4$/AC)에 의한 납 흡착특성을 규명하기 위해 칼럼실험을 통해 파과특성에 미치는 운전변수의 영향에 관해 실험하였다. 활성탄에 망간산화물을 코팅시킴으로써 물질전달대와 평형흡착량은 대략 2.8배 증가하는 것으로 나타났다. 흡착층 높이의 증가는 수용액이 흡착대에 체류하는 시간을 증가시켜 파과시간, 물질전달대와 평형흡착량을 증가시키는 것으로 나타났다. 칼럼으로 공급되는 유량이 증가함에 따라 수용액으로부터 흡착제로 납이 빠르게 전달되어 접촉되므로 파과시간과 물질전달대가 감소하였다. 유량 증가는 흡착대에서 납의 체류시간을 감소시켜 흡착경계면에서의 확산현상을 감소시키므로 평형흡착량을 감소시키는 것으로 나타났다. 칼럼으로 유입되는 납 농도가 증가하면 흡착제로 전달되는 납의 양이 증가하여 물질전달이 빠르게 완료되므로 파과시간과 물질전달대가 감소하는 것으로 나타났다.

Keywords

References

  1. Aksu Z. and Gonen F. (2004), Biosorption of phenol by immobilized activated sludge in a continuous packed bed : prediction of breakthrough curves, Process Biochemistry, Vol. 39, No. 5, pp. 599-613. https://doi.org/10.1016/S0032-9592(03)00132-8
  2. Allen E., Fu G. and Cowan C. (1991), Adsorption of cadmium and copper by manganese oxide, Soil Science, Vol. 152, No. 2, pp. 72-81. https://doi.org/10.1097/00010694-199108000-00002
  3. Baral S. S., Das N., Ramulu T. S., Sahoo S. K., Das S. N. and Chaudhury G. R. (2009), Removal of Cr(VI) by thermally activated weed Salvinia cucullata in a fixed-bed column, Journal of Hazardous Materials, Vol. 161, No. 2-3, pp. 1427-1435. https://doi.org/10.1016/j.jhazmat.2008.04.127
  4. Chingombe P., Saha B. and Wakeman R. J. (2005), Surface modification and characterisation of a coal-based activated carbon, Carbon, Vol. 43, No. 15, pp. 3132-3143. https://doi.org/10.1016/j.carbon.2005.06.021
  5. Kalavathy H., Karthik B. and Mirada L. R. (2010), Removal and recovery of Ni and Zn from aqueous solution using activated carbon from hevea brasiliensis: batch and column studies, Colloids and Surface B; Biointerfaces, Vol. 78, No. 1, pp. 291-302. https://doi.org/10.1016/j.colsurfb.2010.03.014
  6. Khodadoust S., Ghaedi M., Sahraei R. and Daneshfar A. (2013), Application of experimental design for removal of sunset yellow by copper sulfide nanoparticles loaded on activated carbon, Journal of Industrial and Engineering Chemistry, Vol. 20, No. 5, pp. 2663-2670. https://doi.org/10.1016/j.jiec.2013.10.053
  7. Ko D. C. K., Porter J. F. and McKay G. (2000), Optimised correlations for the fixed-bed adsorption of metal ions on bone char, Chemical Engineering Science, Vol. 55, No. 23 pp. 5819-5829. https://doi.org/10.1016/S0009-2509(00)00416-4
  8. Lee, M. E., Park, J. H., Chung, J. W., Lee C. Y. and Kang, S. (2014a), Removal of Pb and Cu ions from aqueous solution by $Mn_3O_4$-coated activated carbon, Journal of Industrial and Engineering Chemistry, http://dx.doi.org/10.1016/j.jiec.2014.03.006.
  9. Lee, S. J., Lee, M. E. and Chung, J. W. (2014b), Comparison of heavy metal adsorption by manganese oxide-coated activated carbon according to manufacture method, Journal of Korean Society of Environmental Engineers, Vol. 36, No. 1, pp. 7-12. (in Korean). https://doi.org/10.4491/KSEE.2014.36.1.7
  10. Malkoc E., Yasar N. and Murat D. (2006), Adsorption of chromium(VI) on pomace-an olive industry waste : batch and column studies, Journal of Hazardous Materials, Vol. 138, No. 1, pp. 142-151. https://doi.org/10.1016/j.jhazmat.2006.05.051
  11. Mugisidi D., Ranaldo A., Soedarsono W. J. and Hikam M. (2007), Modification of activated carbon using sodium acetate and its regeneration using sodium hydroxide for the adsorption of copper from aqueous solution, Carbon, Vol. 45, No. 5, pp. 1081-1084. https://doi.org/10.1016/j.carbon.2006.12.009
  12. Padmesh T. V. N., Vijayaraghavan K., Sekaran G. and Velan M. (2005), Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides, Journal of Hazardous Materials, Vol. 125, No. 1-3, pp. 121-129. https://doi.org/10.1016/j.jhazmat.2005.05.014
  13. Tiwari D., Laldanwngliana C., Choi C. H. and Lee S. M. (2011), Manganese-modified natural sand in the remediation of aquatic environment contaminated with heavy metal toxic ions, Chemical Engineering Journal, Vol. 171, No. 3, pp. 958-966. https://doi.org/10.1016/j.cej.2011.04.046
  14. Wang S. G., Gong W. X., Liu X. W., Yao Y. W., Gao B. Y. and Yanyue Q. (2007), Removal of lead (II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes, Separation and Purification Technology, Vol. 58, No. 1, pp. 17-23. https://doi.org/10.1016/j.seppur.2007.07.006
  15. Zhao, X., Zhang, G., Jia, Q., Zhao, C., Zhou, W. and Li, W. (2011), Adsorption of Cu(II), Co(II), Ni(II) and Cd(II) from aqueous solution by poly(aryl ether ketone) containing pendant carboxyl groups(PPK-L): equilibrium, kinetics and thermodynamics, Chemical Engineering Journal, Vol. 171, No. 1, pp. 152-158. https://doi.org/10.1016/j.cej.2011.03.080
  16. Zou W., Han R., Chen Z., Jinghua Z. and Shi J. (2006a), Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode, Colloids and Surfaces A Physicochemical and Engineering Aspects, Vol. 279, No. 1-3, pp. 238-246. https://doi.org/10.1016/j.colsurfa.2006.01.008
  17. Zou W., Han R., Chen Z., Shi J. and Hongmin (2006b), Characterization and properties of manganese oxide coated zeolite as adsorbent for removal of copper(II) and lead(II) ions from solution, Journal of Chemical Engineering Data, Vol. 51, No. 2, pp. 534-541. https://doi.org/10.1021/je0504008