DOI QR코드

DOI QR Code

Reproducibility of Reaeration in Sewer using Batch Reactor Test

실험반응조를 이용한 하수관에서의 재포기현상 재현 가능성에 관한 연구

  • Hwang, Hwankook (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Min, Sangyun (Samchully Environment & Biotech Technology Institute) ;
  • Cho, Jinkyu (Department of Civil Engineering, Kimpo College)
  • Received : 2014.05.08
  • Accepted : 2014.07.01
  • Published : 2014.08.01

Abstract

The microorganism decomposition experiment of sewage in the underground sewer has the limit of experiment condition and time. The way to reproduce the microorganism decomposition in the underground sewer was studied using batch reactor setting up the DO as a limiting condition. The DO concentration in the sewer is controlled by reaeration. It is possible to obtain correlation between flow condition and reaeration coefficient through the reproduction of reaeration phenomenon by controlling the flow condition in the sewer using this phenomenon. And it is possible to set the flow condition and agitation intensity (velocity gradient) that has the same reaeration coefficient using the correlation between the reaeration coefficient with the flow condition and reaeration coefficient with the agitation intensity. The circumstances in the sewer system was reproduced using batch reactor setting up the DO as a limiting condition from these results.

하수관 내에서의 하수와 미생물의 반응에 대한 실험은 이미 매설된 하수관에 적용할 경우 실험조건의 변화가 제한적이며 실험시간에도 한계가 있다. 본 연구에서는 이러한 하수관 내에서의 하수와 미생물의 반응에 대하여 DO를 제한 조건으로 설정하였을 경우, 실험실 내에서 실험반응조를 통해 재현하는 방법에 대하여 연구하였다. 하수관 내에서의 DO 농도는 기상 중의 산소가 하수 내로 이동하는 재포기현상에 의해 조절된다. 이러한 현상을 이용하여 임의로 실험반응조에서 하수관 내의 유하조건을 조절하고 재포기현상을 재현하여 유하조건과 재포기계수와의 상관관계를 얻을 수 있으며, 교반강도(속도경사)에 따른 재포기계수와 하수관거에서의 유하조건에 따른 재포기계수의 상관관계를 통해 동일한 재포기계수 값을 갖는 교반강도와 유하조건을 설정할 수 있다. 이러한 결과를 통해 재포기계수를 제한인자로 설정하여 실험을 실시할 경우 하수관거에서의 상황을 실험반응조를 통해 재현할 수가 있었다.

Keywords

References

  1. ASCE (1992), ASCE standard- measurement of oxygen transfer in clean water, ANSI/ASCE 2-91, pp. 3-7.
  2. Huisman, J. L., Weber, N. and Gujer, W. (2004), Reaeration in sewers, Water Research. Vol. 38, No. 5, pp. 1089-1100. https://doi.org/10.1016/j.watres.2003.11.025
  3. Jensen, N. A. (1995), Emperical modelling of air-to-water oxygen transfer in gravity sewers, Water Environment Research, Vol. 67. No. 6, pp. 979-991. https://doi.org/10.2175/106143095X133211
  4. Kim, K. H. (2002), Evaluation of velocity gradient with impeller type of rapid mixer, Master's thesis, Pukyong National University, pp. 17-33 (in Korean).
  5. Lee, M. S. (1999), Studies on the overall oxygen transfer rate and mixing effect in a pilot scale oxygen activated sludge system using surface aerator, Master's thesis, Yonsei University, pp. 15-20 (in Korean).
  6. Metcalf & eddy, Inc. (2003), Wastewater engineering: treatment and reuse, 4th Edition, McGraw-Hill, N.Y., pp. 348-358.
  7. Parkhurst, J. D. and Pomeroy, R. D. (1972), Oxygen absorption in streams, Journal of the Sanitary Engineering Division, ASCE, Vol. 98, No. 1, pp. 101-124.
  8. Thackston, E. L. and Krenkel, P. A. (1969), Reaeration prediction in natural streams, Journal of the Sanitary Engineering Division, ASCE, Vol. 95, No. 1, pp. 65-94.