DOI QR코드

DOI QR Code

Germination and Antioxidant Activity of Korean Oak Pollen Treated with Medicinal Mushrooms

약용버섯을 이용한 도토리화분의 세포 발아 및 항산화 활성

  • Hong, In-Pyo (National Academy of Agricultural Science and Technology, Rural Development Administration) ;
  • Woo, Soon-Ok (National Academy of Agricultural Science and Technology, Rural Development Administration) ;
  • Han, Sang-Mi (National Academy of Agricultural Science and Technology, Rural Development Administration) ;
  • Yeo, Joo-Hong (National Academy of Agricultural Science and Technology, Rural Development Administration) ;
  • Cho, Mi-Lan (National Academy of Agricultural Science and Technology, Rural Development Administration)
  • 홍인표 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 우순옥 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 한상미 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 여주홍 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 조미란 (농촌진흥청 국립농업과학원 농업생물부)
  • Received : 2014.04.24
  • Accepted : 2014.06.26
  • Published : 2014.06.30

Abstract

In this study, we measured antioxidant activity as DPPH radical scavenging and the total polyphenol content of pulverized and lyophilized oak pollens inoculated with fungi to confirm the husk removal effect. The total polyphenol content of oak pollen was highest in lyophilized pollen medium inoculated with Armillaria mellea, and was lowest in pollen inoculated with Lentinula edodes. Total polyphenol content of the lyophilized pollen was higher than that of the refined pollen and the pulverized pollen in oak pollen germinated with A. mellea. The total polyphenol content of the lyophilized oak pollen germinated with A. mellea was 1.4-fold higher than that extracted with water. Measurement of antioxidant activity using the DPPH (2, 2 diphenyl-1-picrylhydrazyl) free radical scavenging method showed that the lyophilized oak pollen germinated with A. mellea had the highest and that germinated with L. edodes was lowest in antioxidant activities. The lyophilized oak pollen germinated with A. mellea was 2 to 4 times higher than that extracted with water in the antioxidant activity of DPPH free radical scavenging. Many germinated cells were formed around pore of acorn pollen inoculated with L. edodes, while those were formed at the end of hyphae derived from oak pollen inoculated with A. mellea.

도토리화분의 총 폴리페놀함량은 화분배지에 뽕나무버섯(Armillaria mellea) 배양한 발아액에서 가장 높았으며, 표고(Lentinula edodes) 발아액에서 가장 낮았다. 뽕나무버섯을 배양한 발아액 중에서 동결건조 화분의 발아액이 정제화분과 저온초미분쇄화분의 발아액보다 총 폴리페놀함량이 많았다. 또한 동결건조 화분의 뽕나무버섯 발아액은 물추출액보다 총 폴리페놀함량이 1.4배 높았다. 도토리화분의 DPPH radical 소거능은 뽕나무버섯 발아액에서 가장 높았으며, 표고 발아액에서 가장 낮았다. 동결건조 화분의 뽕나무버섯 발아액은 DPPH radical 소거능이 물추출보다 2~4배 높았다. 수집된 꿀벌화분은 알갱이 형태이며, 꿀벌의 분비물을 제거한 순수 화분은 분말형태로 크기는 0.1~0.003 mm 정도이다. 화분의 전자현미경 구조는 도토리화분은 단립이며 모양은 장구형(prolate)이고 극면상은 난형이다. 발아구는 3구형이며 비교적 짧고 곧은 주름이 있다. 표면은 과립상(verrucate) 또는 미립상(scabrate)으로 불규칙한 돌기가 있다. 저온초미분쇄한 화분은 세포벽이 파쇄 또는 절단되었으며, 동결건조한 화분에서는 세포벽이 파열되어 세포질이 나출되는 양상을 보였다. 표고를 접종한 도토리 화분의 세포 발아 형태는 공구(pore) 주변에 외피가 없는 다량의 발아세포가 형성되었으며, 뽕나무버섯을 접종한 화분배지에서의 세포 발아 형태는 화분에서 균사속과 유사한 발아관이 형성되고 그 끝에 발아세포가 형성되었다.

Keywords

References

  1. Chung YG, Yoon SH, Kwon JS, Bae MJ. Nutritional and biochemical studies on the pollen loads studies on lipid compositions of sunflower pollen load and effects of its pollen load on liver cholesterol metabolism in mouse. J Kor Soc Food Nutr 1984;13:169-74.
  2. Li F, Yuan QP, Rashid F. Isolation, purification and immunobiological activity of a new water-soluble bee pollen polysaccharide from Crataegus pinnatifida Bge. Carbohydr Polym 2009;78:80-8. https://doi.org/10.1016/j.carbpol.2009.04.005
  3. Block G, Langseth L. Antioxidant vitamins and disease prevention. Food Technol 1994;48:80-4.
  4. Andrade P, Ferreres F, Gil MI, Tomas-Barberan FA. Determination of phenolic compounds in honeys with different floral origin by capillary zone electrophoresis. Food Chemistry 1997;60:79-84. https://doi.org/10.1016/S0308-8146(96)00313-5
  5. Kress WJ, Stone DE, Sellers SC. Ultrastructure of exine-less pollen: Heliconia (Heliconiaceae). Amer J Bot 1978;65:1064-76. https://doi.org/10.2307/2442323
  6. Choi SJ, Jeong YH. Effect of proteases on the extraction of crude protein and reducing sugar in pollen. J Kor Soc Food Sci Nutr 2004;33:1353-8. https://doi.org/10.3746/jkfn.2004.33.8.1353
  7. Fang KF, Wang YN, Yu TQ, Zhang LY, Baluska F, Samaj J, Lin JX. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl. and Picea wilsonii Mast. Flora 2008;203:332-40.
  8. Han MR, Lee SJ, Kim MH. Development of pine pollen cell wall rupture technique using a high impact planetary milling process. Dankook J New Material Technol 2004;12:43-54.
  9. Blois MS. Antioxidants determination by the use of a stable free radical. Nature 1958;181:1199-200. https://doi.org/10.1038/1811199a0
  10. Liangli Y, Scott A, Jonathan P, Mary H, John W, Ming Q. Antioxidant properties of hard winter wheat extracts. J Agric Food Chem 2002;60:1619-24.
  11. Schwarze FWMR, Engels J, Mattheck C. Fungal Strategies of Wood Decay in Trees. Springer; 2000. p. 61-4.