DOI QR코드

DOI QR Code

Multiplex Simple Sequence Repeat (SSR) Markers Discriminating Pleurotus eryngii Cultivar

큰느타리(Pleurotus eryngii) 품종 판별을 위한 초위성체 유래 다중 표지 개발

  • Im, Chak Han (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Kyung-Hee (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Je, Hee Jeong (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ali, Asjad (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Min-Keun (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Joung, Wan-Kyu (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Lee, Sang Dae (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Shin, HyunYeol (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ryu, Jae-San (Gyeongsangnam-do Agricultural Research and Extension Services)
  • Received : 2014.05.13
  • Accepted : 2014.06.26
  • Published : 2014.06.30

Abstract

For development of a method for differentiation of Pleurotus eryngii cultivars, simple sequence repeats (SSR) from whole genomic DNA sequence analysis was used for genotyping and two multiplex-SSR primer sets were developed. These SSR primer sets were employed to distinguish 12 cultivars and strains. Five polymorphic markers were selected based on the genotyping results. PCR using each primer produced one to four distinct bands ranging in size from 200 to 300 bp. Polymorphism information content (PIC) values of the five markers were in the range of 0.6627 to 0.6848 with an average of 0.6775. Unweighted pairgroup method with arithmetic mean clustering analysis based on genetic distances using five SSR markers classified 12 cultivars into two clusters. Cluster I and II were comprised of four and eight cultivars, respectively. Two multiplex sets, Multi-1 (SSR312 and SSR366) and Multi-2 (SSR178 and SSR277) completely discriminated 12 cultivars and strains with 21 alleles and a PIC value of 0.9090. These results might be useful in providing an efficient method for the identification of P. eryngii cultivars with separate PCR reactions.

큰느타리 품종구분을 위한 마커의 개발을 위하여 큰느타리 전체 유전자 염기서열을 바탕으로 제작한 484개의 SSR마커를 사용하여 다형성 분석을 실시하였다. 그 결과 각 275개의 primer에서 다형성이 관찰되었다. 이 중 품종간에 다양한 패턴을 나타내는 5개의 마커를 최종 선발하였다. 이들 마커의 PIC 값은 0.6627에서 0.6848로 나타났고, 평균값은 0.6775였다. 이 결과를 밴드 이미지 인식 방법으로 dendrogram을 작성하였다. UPGMA 집괴분석 결과, 큰느타리 품종은 크게 Cluster 1과 Cluster 2로 구분되었다. SSR primer를 이용한 PCR 결과 나타나는 품종별 고유의 DNA 밴드를 품종특이적 마커로 개발하기 위하여, 선발된 마커중에서 SSR312과 SSR366, SSR178과 SSR 277 마커를 조합하여 초위성체 유래 다중 표지 세트를 개발하였다. Multiplex-SSR 마커의 사용을 통해 두번의 PCR 반응만으로 본 연구에서 사용된 12개의 큰느타리 품종을 구분할 수 있었다.

Keywords

References

  1. Miles PG, Chang ST. Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. 2nd ed. Boca Raton, FL: CRC Press; 2004. p. 1-4, 207.
  2. Carbonero ER, Gracher AHP, Smiderle FR, Rosado FR, Sassaki GL, Gorin PA, Iacomini M. A ${\beta}$-glucan from the fruit bodies of edible mushrooms Pleurotus eryngii and Pleurotus ostreatoroseus. Carbohydr Polym 2006;66:252-7. https://doi.org/10.1016/j.carbpol.2006.03.009
  3. Jang MJ, Lee YH, Kim JH, Ju YC. Effect of LED light on primordium formation, morphological properties, ergosterol content and antioxidant activity of fruit body in Pleurotus eryngii. Kor J Mycol 2011;39:175-9. https://doi.org/10.4489/KJM.2010.39.3.175
  4. Kang TS, Jeong HS, Lee ML, Park HJ, Jo TS, Ji ST, Sin MG. Mycelial growth using the natural product and angiotensin converting enzyme inhibition activity of Pleurotus eryngii. Kor J Mycol 2003;31:175-80. https://doi.org/10.4489/KJM.2003.31.3.175
  5. Rajarathnam R, Bano Z. Pleurotus mushrooms. Part 1A. Morphology, life cycle, taxonomy. breeding and cultivation. Crit Rev Food Sci Nutr 1987;26:157-222. https://doi.org/10.1080/10408398709527465
  6. Chen Y, Nelson RL. Genetic variation and relationships among cultivated, wild and semiwild soybean. Crop Sci 2004;44:316-25. https://doi.org/10.2135/cropsci2004.0316
  7. Semagn K, Bjornstad A, Ndjiondjop MN. An overview of molecular marker methods for plants. Afr J Biotechnol 2006;5:2540-68.
  8. Li YC., Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 2002;11:2453-65. https://doi.org/10.1046/j.1365-294X.2002.01643.x
  9. Bernardo R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 2008;48:1649-64. https://doi.org/10.2135/cropsci2008.03.0131
  10. Collard BC, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 2008;363:557-72. https://doi.org/10.1098/rstb.2007.2170
  11. Seo KI, Jang KY, Yoo YB, Park SY, Kim KH, Kong WS. Development and application of Weonhyeong strain-specific SCAR marker in Pleurotus ostreatus. Kor J Mycol 2011;39: 22-30. https://doi.org/10.4489/KJM.2011.39.1.022
  12. Seo KI, Jang KY, Yoo YB, Park SY, Kim KH, Kong WS. Development of Suhan strain-specific SCAR marker in Pleurotus ostreatus. Kor J Mycol 2011;39:31-8. https://doi.org/10.4489/KJM.2011.39.1.031
  13. Foulongne-Oriol M, Spataro C, Cathalot V, Monllor S, Savoie J. An expanded genetic linkage map of an intervarietal Agaricus bisporus var. bisporus ${\time}$ A. bisporus var. burnettii hybrid based on AFLP, SSR and CAPS markers sheds light on the recombination behavior of the species. Fungal Genet Biol 2010;47:226-36. https://doi.org/10.1016/j.fgb.2009.12.003
  14. Larraya LM, Perez G, Ritter E, Pisabarro AG, Ramyìrez L. Genetic linkage map of the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 2000;66:5290-300. https://doi.org/10.1128/AEM.66.12.5290-5300.2000
  15. Okuda Y, Murakami S, Matsumoto T. A genetic linkage map of Pleurotus pulmonarius based on AFLP markers, and localization of the gene region for the sporeless mutation. Genome 2009;52:438-46. https://doi.org/10.1139/G09-021
  16. Terashima K, Matsumoto T, Hayashi E, Fukumasa-Nakai Y. A genetic linkage map of Lentinula edodes (shiitake) based on AFLP markers. Mycol Res 2002;106:911-7. https://doi.org/10.1017/S0953756202006275
  17. Ro HS, Kim SS, Yu JS, Jeon CO, Lee TS, Yoo J, Lee CW, Kim JW, Lee HS. Comparative studies on the diversity of the edible mushroom Pleurotus eryngii: ITS sequence analysis, RAPD fingerprinting and physiological characteristics. Mycol Res 2007;111:710-5. https://doi.org/10.1016/j.mycres.2007.03.016
  18. Zervakis GI, Venturella G, Papadopoulou K. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology 2001; 147:3183-94. https://doi.org/10.1099/00221287-147-11-3183
  19. Okuda Y, Ueda J, Obatake Y, Murakami S, Fukumasa Y, Matsumoto T. Construction of a genetic linkage map based on amplified fragment length polymorphism markers and development of sequence-tagged site markers for marker-assisted selection of the sporeless trait in the oyster mushroom (Pleurotus eryngii). Appl Environ Microbiol 2012;78:1496-1504. https://doi.org/10.1128/AEM.07052-11
  20. Kim KH, Im CH, Je HJ, Kim MK, Chae SM, Ryu JS. Complete genome sequence of Plurotus eryngii KNR2312 using the Next Generation Sequencing (NGS). Iran. In: International symposium & annual meeting: a new era of biotechnology and bioeconomy; 2012 Jun 27-29; South Korea, Busan: Korean Society for Microbiology and Biotechnology; 2012. p. 374.
  21. Durbin R., Eddy S., Krogh A., Mitchison G., Building phylogenetic trees, Chapter 7, Biological Sequence Analysis, Cambridge University Press, 1998. p. 160-90.

Cited by

  1. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica vol.6, 2015, https://doi.org/10.3389/fpls.2015.00688
  2. ) pp.2092-9323, 2018, https://doi.org/10.1080/12298093.2018.1538072
  3. Genome-Wide Characterization and Expression Analyses of Pleurotus ostreatus MYB Transcription Factors during Developmental Stages and under Heat Stress Based on de novo Sequenced Genome vol.19, pp.7, 2018, https://doi.org/10.3390/ijms19072052