DOI QR코드

DOI QR Code

Preparation and Characterization of Microfiltration Membranes for Water Treatment

수처리용 정밀여과 멤브레인의 제조 및 특성 연구

  • Jung, Boram (Department of Environmental Engineering, Dong-Eui University) ;
  • Kim, Nowon (Department of Environmental Engineering, Dong-Eui University)
  • Received : 2014.02.12
  • Accepted : 2014.02.25
  • Published : 2014.02.28

Abstract

An asymmetric microfiltration membranes were prepared with polysulfone by an immersion precipitation phase inversion method. Microfiltration membranes were prepared by polysulfone/N-methyl-2-pyrrolidone/polyvinylpyrrolidone/phosphoric acid casting solution and water coagulant. The vapor induced phase inversion method was used to prepare the membranes. The pore size and the morphology were changed by the phosphoric acid additive, the temperature of casting plate and the exposure time at the relative humidity of 74%. The morphology of membranes was investigated by scanning electron microscopy and microflow permporometer. By the addition of the phosphoric acid additive in the casting solution, the morphology of the prepared membranes were changed from a dense sponge structure to a loose asymmetric sponge structure. Due to the addition of catalytic amount of phosphoric acid to NMP casting solution, the mean pore size increased almost $0.2{\mu}m$ and the water flux increased about 3,000 LMH. The temperature of casting plate and exposure time had a apparent effect on the skin layer structure and the pore size and the porosity of the membrane.

상 전이 공정을 이용하여 polysulfone계 비대칭 정밀 여과막을 제조하였다. Polysulfone/N-methyl-2-pyrrolidone/polyvinylpyrrolidone/phosphoric acid계로 이루어진 casting 용액을 사용하였으며 응고조로는 물을 사용하였다. 멤브레인 제조공정에 적용된 상 전이 공정으로 증기 유도 상 전이 공정을 적용하였으며 상대습도 74%에서 캐스팅 판의 온도와 노출 시간을 조절한 결과 기공의 크기와 구조에 있어 변화를 관찰할 수 있었다. 제조된 멤브레인의 구조는 SEM과 microflow permporometer를 사용하여 조사하였다. Phosphoric acid의 첨가는 조밀한 스펀지 형태의 멤브레인을 느슨한 스펀지 형태의 멤브레인으로 변화시켰으며 촉매량의 Phosphoric acid 첨가로도 평균 기공크기는 거의 $0.2{\mu}m$ 정도 커지고 유량도 약 3,000 LMH가 증가하였다. 캐스팅 판의 온도와 노출 시간의 변화는 표면층의 구조, 기공의 크기 및 공극률에 큰 변화를 가져옴을 확인할 수 있었다.

Keywords

References

  1. J. Mallevialle, P. E. Odendaal, and M. R. Wiesner, "Water Treatment Membrane Processes", pp. 11.1-11.39, McGraw-Hill, New York (1996).
  2. M. Mulder, "Basic Principles of Membrane Technology", pp. 123-132, Kluwer Academic Publishers, London (1996).
  3. R. M. Boom, I. M. Wienk, Th. Van den Boomgaard, and C. A. Smolders, "Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive", J. Membr. Sci., 73, 277 (1992). https://doi.org/10.1016/0376-7388(92)80135-7
  4. M. Wienk, R. M. Boom, M. A. M. Beerlage, A. M. W. Bulte, and C. A. Smolders, "Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers", J. Membr. Sci., 113, 361 (1996). https://doi.org/10.1016/0376-7388(95)00256-1
  5. D. B. Mosqueda-Jimenez, R. M. Narbaitz, T. Matsuura, G. Chowdhury, G. Pleizier, and J. P. Santerre, "Influence of processing conditions on the properties of ultrafiltration membranes", J. Membr. Sci., 231, 209 (2004). https://doi.org/10.1016/j.memsci.2003.11.026
  6. S.-J. Shin, J.-P. Kim, H.-J. Kim, J.-H. Jeon, and B.-R. Min, "Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive", Desalination, 186, 1 (2005). https://doi.org/10.1016/j.desal.2005.03.092
  7. R. M. Boom, T. van den Boomgard, and C. A. Smolders, "Mass transfer and thermodynamics during immersion precipitation for a two-polymer system: evaluation with the system PES-PVP-NMPwater", J. Membr. Sci. 90, 231 (1994). https://doi.org/10.1016/0376-7388(94)80074-X
  8. D. Rana, T. Matsuura, R. M. Narbaitz, and C. Feng, "Development and characterization of novel hydrophilic surface modifying macromolecule for polymeric membranes", J. Membr. Sci., 249, 103 (2005). https://doi.org/10.1016/j.memsci.2004.09.034
  9. V. P. Khare, A. R. Greenberg, and W. B. Krantz, "Vapor-induced phase separation-effect of the humid air exposure step on membrane morphology: Part I. Insights from mathematical modeling", J. Membr. Sci., 258, 140 (2005). https://doi.org/10.1016/j.memsci.2005.03.015
  10. B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, "Effect of molecular weight of PEG on membrane morphology and transport properties", J. Membr. Sci. 309, 209 (2008). https://doi.org/10.1016/j.memsci.2007.10.027
  11. Y. Ma, F. Shi, M. Wu, J. Zhang, and C. Gao, "Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes", Desalination, 272, 51 (2011). https://doi.org/10.1016/j.desal.2010.12.054
  12. D. Ranaa, T. Matsuuraa, and R. M. Narbaitzb, "Novel hydrophilic surface modifying macro molecules for polymeric membranes: Polyurethane ends capped by hydroxy group", J. Membr. Sci., 282, 205 (2006). https://doi.org/10.1016/j.memsci.2006.05.024
  13. M.-J. Han, "Effect of propionic acid in the casting solution on the characteristics of phase inversion polysulfone membranes", Desalination, 121, 31 (1999). https://doi.org/10.1016/S0011-9164(99)00005-3
  14. N. Kim, C.-S. Kim, and Y.-T. Lee, "Preparation and characterization of polyethersulfone membranes with p-toluenesulfonic acid and polyvinylpyrrolidone additives", Desalination, 233, 218 (2008). https://doi.org/10.1016/j.desal.2007.09.046
  15. B. G. Park, S.-H. Kong, and S. Y. Nam, "Phase Behavior and Morphological Studies of Polysulfone Membranes; The Effect of Alcohols Used as a Non - solvent Coagulant", Membrane Journal, 15, 272 (2005).
  16. M. Han, "Effect of Nonsolvent Additive in Casting Solutions on Polysulfone Membrane Preparation", Membrane Journal, 6, 157 (1996).
  17. I.-F. Wang, R. A. Morris, and R. F. Zepf, "Highly asymmetric, hydrophilic, microfiltration membranes having large pore diameters", U.S. Patent 6,565,782 (2003).
  18. N. Kim, "Preparation and Characterization of PSF Membranes by Phosphoric Acid and 2-Butoxyethanol", Membrane. Journal, 22, 1 (2012).
  19. S. M. Woo, J. J. Choi, and S. Y. Nam, "Preparation of hydroxy Polyimide Membranes for Gas Separation by Phase Inversion Method", Membrane Journal, 22, 62 (2012).
  20. Handbook of Solubility Parameters, Allan F. M. Barton. Ph.D., CRC Press, pp. 153-157 (1983).