DOI QR코드

DOI QR Code

Effect of pH and Oxygen Back-flushing on Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads

관형 세라믹 정밀여과와 광촉매 첨가 PES 구를 이용한 혼성 수처리 공정에서 pH 및 산소 역세척의 영향

  • Park, Jin Yong (Dept. of Environmental Sciences & Biotechnology, Hallym University) ;
  • Park, Sung Woo (Dept. of Environmental Sciences & Biotechnology, Hallym University) ;
  • Byun, Hongsik (Dept. of Chemical System Engineering, Keimyung University)
  • 박진용 (한림대학교 환경생명공학과) ;
  • 박성우 (한림대학교 환경생명공학과) ;
  • 변홍식 (계명대학교 화학시스템공학과)
  • Received : 2014.01.27
  • Accepted : 2014.02.21
  • Published : 2014.02.28

Abstract

The effects of pH and oxygen back-flushing were investigated in hybrid process of ceramic microfiltration and PES (polyethersulfone) beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As increasing pH, $R_f$ decreased and J increased. Finally the maximum $V_T$ could be acquired at pH 9. Treatment efficiencies of turbidity was almost same independent of pH. Treatment efficiency of dissolved organic matters (DOM) decreased as increasing pH. As results of comparing the oxygen and nitrogen back-flushing, $R_{f,180}$ at oxygen back-flushing was the lower than that at nitrogen back-flushing, and the dimensionless final permeate flux ($J_{180}/J_0$) by initial permeate flux ($J_0$) at oxygen back-flushing was maintained the higher than that at nitrogen back-flushing except 10 and 12 min of back-flushing period (FT). Treatment efficiency of turbidity at oxygen back-flushing was a little higher than that at nitrogen back-flushing. Treatment efficiency of the DOM at nitrogen back-flushing was the higher than that at oxygen back-flushing. Also, treatment efficiency of turbidity at saturated oxygen was similar with those of oxygen and nitrogen back-flushing, but the treatment efficiency of DOM was increased significantly because OH radical could be generated by reaction between saturated oxygen and photocatalyst.

고도정수처리를 위한 관형 세라믹 정밀여과와 이산화티타늄($TiO_2$) 광촉매 첨가 PES (polyethersulfone) 구의 혼성공정에서 pH 및 산소 역세척의 영향을 막오염에 의한 저항($R_f$) 및 투과선속(J), 총여과부피($V_T$)의 관점에서 고찰하였다. pH가 높아질수록 $R_f$가 감소하고, J는 증가하는 경향을 보였다. 결과적으로 pH 9에서 최대의 $V_T$를 나타내었다. 탁도의 처리효율은 pH와 무관하게 98.7~99.0%의 비슷한 처리효율을 보였다. 용존유기물질(DOM)의 처리효율은 pH가 높아질수록 감소하였다. 산소와 질소 역세척의 차이를 비교한 결과, $R_{f,180}$ 값이 산소 역세척 시 질소보다 낮게 나타났고, 초기투과선속($J_0$)으로 무차원 화한 최종투과선속($J_{180}/J_0$)은 역세척 주기(FT) 10분과 12분을 제외하고 산소 역세척이 질소 보다 높게 유지되었다. 산소 역세척 시 탁도물질의 처리효율은 질소 보다 다소 높게 나타났지만, 그 차이는 미비하다. 질소 역세척 시 DOM의 처리율은 산소보다 높게 나타났다. 또한, 포화산소 조건에서 탁도물질의 처리율은 산소 또는 질소 역세척 경우와 비슷하게 나타났지만, 포화산소가 광촉매와 반응하여 OH 라디칼을 생성하였기 때문에 DOM의 처리효율은 큰 폭으로 증가하였다.

Keywords

References

  1. H. Zhang, X. Quan, S. Chen, H, Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006). https://doi.org/10.1016/j.seppur.2005.11.018
  2. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of TiO2 photo catalysts on super-hydrophovic porous teflon membrane by an ion assisted deposition method and their selfcleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003). https://doi.org/10.1016/S0168-583X(03)00895-4
  3. K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
  4. J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Disserationm, Yeungnam Univ., Daegu, Korea (2004).
  5. C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).
  6. R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004). https://doi.org/10.1016/j.cep.2004.01.008
  7. T. H. Bae and T. M. Tak, "Effect of $TiO_{2}$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 49, 1 (2005).
  8. R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  9. I. R. Bellobono, B. Barni, and F. Gianturco, "Pre-industrial experience in advanced oxidation and integral photodegradation of organics in potable waters and waste waters by PHOTHOPERMTM membranes immobilizing titanium dioxide and promoting photocatalysts", J. Membr. Sci., 102, 139 (1995). https://doi.org/10.1016/0376-7388(94)00273-2
  10. R. Molinari, M. Mungari, E. Drioli, A. D. Paola, V. Loddo, L. Palmisano, and M. Schiavello, "Study on a photocatalytic membrane reactor for water purification", Catal. Today, 55, 71 (2000). https://doi.org/10.1016/S0920-5861(99)00227-8
  11. R. Molinari, C. Grande, E. Drioli, L. Palmisano, and M. Schiavello, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Catal. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  12. R. Molinari, L. Palmisano, E. Drioli, and M. Schiavello, "Studies on various reactor configurations for coupling photocatalysis and membrane process in water purification", J. Membr. Sci., 206, 399 (2002). https://doi.org/10.1016/S0376-7388(01)00785-2
  13. J. Kleine, K. V. Peinemann, C. Schuster, and H. J. Warnecke, "Multifunctional system for treatment of wastewaters from adhesive-producing industries: separation of solids and oxidation of dissolved pollutants using doted microfiltation membranes", Chem. Eng. Sci., 57, 1661 (2002). https://doi.org/10.1016/S0009-2509(02)00043-X
  14. K. Karakulski, W. A. Morawski, J. Grzechulska, K. Karakulski, W. A. Morawski, and J. Grzechulska, "Purification of bilge water by hybrid ultrafiltration and photocatalytic process", Separ. & Purification Technol., 14, 163 (1998). https://doi.org/10.1016/S1383-5866(98)00071-9
  15. W. Xi and S. U. Geissen, "Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration", Wat. Res., 35, 1256 (2001). https://doi.org/10.1016/S0043-1354(00)00378-X
  16. K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  17. M. Pidou, S. A. Parsons, G. Raymond, P. Jeffery, T. Stephenson, and B. Jefferson, "Fouling control of a membrane coupled photocatalytic process treating greywater", Wat. Res., 43, 3932 (2009). https://doi.org/10.1016/j.watres.2009.05.030
  18. M. Cheryan, "Ultrafiltraion Handbook", pp. 89-93, Technomic Pub. Co., Pennsylvania (1984).
  19. J. Y. Park and G. S. Lee, "Advanced water treatment of high turbidity source by hybrid process of photocatalyst and ceramic microfiltration: effect of organic materials in water-back-flushing", Membrane Journal, 21, 72 (2011).
  20. A. Figoli, G. De Luca, E. Longavita, and E. Drioli, "PEEKWC capsules prepared by phase inversion technique: a morphological and dimensional study", Separation Science and Technology, 42, 2809 (2007). https://doi.org/10.1080/01496390701558284
  21. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of N2-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment", Desalination, 202, 207 (2007). https://doi.org/10.1016/j.desal.2005.12.056
  22. J. Y. Park and S. H. Lee, "Effect of waterback- flushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane", Membrane Journal, 19, 194 (2009).
  23. H. C. Lee, J. H. Cho, and J. Y. Park, "Effect of water-back-flushing time and period in advanced water treatment system by ceramic microfiltration", Membrane Journal, 18, 26 (2008).
  24. J. Y. Yun, "Removal of natural organic matter in Han River water by GAC and O3/GAC", Master Dissertation, Univ. of Seoul, Seoul, Korea (2007).
  25. Y. Zhao, S. Zhou, and M. Li,."Humic acid removal and easy-cleanability using temperature responsive $ZrO_{2}$ tubular membranes grafted with poly(N-isopropylacrylamide) brush chains", Water Research, 47, 2375 (2013). https://doi.org/10.1016/j.watres.2013.02.004
  26. C. Y. Kim, Y. Y. Park, and S. P. Ryu, "Characteristic of degradation of humic acid using jeju Scoria coated with $WO_{3}/TiO_{2}$ photocatalyst", Korean Society of Urban Environment, 11, 295 (2011).
  27. J. Kim, W. Choi, and H. Park, "Effects of $TiO_{2}$ surface fluorination on photocatalytic degradation of methylene blue and humic acid", Res. Chem. Intermed., 36, 127 (2010). https://doi.org/10.1007/s11164-010-0123-8
  28. S. T. Hong and J. Y. Park and, "Hybird water treatment of tubular ceramic MF and photocatalyst loaded polyethersulfone beads: effect of nitrogen back-flushing period and time", Membrane Journal, 23, 70 (2013).