DOI QR코드

DOI QR Code

Evaluation of Wave Characteristics and JONSWAP Spectrum Model in the Northeastern Jeju Island on Fall and Winter

제주도 북동부 연안에서 추동계 파랑특성과 JONSWAP 스펙트럼의 적용성 평가

  • Kang, Dong-Hyub (Jeju National University Graduate School of Specialized Wind Energy) ;
  • Lee, Byung-Gul (Department of Civil Engineering, Jeju National University College of Ocean Science)
  • 강동협 (제주대학교 대학원 풍력특성화협동과정) ;
  • 이병걸 (제주대학교 해양과학대학 토목공학과)
  • Received : 2013.06.07
  • Accepted : 2014.02.17
  • Published : 2014.05.25

Abstract

Analysis frequency spectrum through observed wave data in northeastern shore, jeju island, during winter and fall, and review wave characteristics. In order to compute maximum wave height, we calculate the ratio of significant wave height to maximum wave height using the linear regression equation. In addition, for calculating JONSWAP spectrum, we assumed ${\gamma}$ value using significant wave height and peak frequency in the observation area. Consequently, the highest frequency is below 1 m in the case of significant wave height and during the first observation, the mean of height was estimated at 0.523 m and during the scend observation, it was 0.423 m. Furthermore, in peak frequency, the highest frequency was 0.12 Hz~0.15 Hz (period is nearly 6.67s~8.33s), the results of ${\gamma}$ from using significant wave height and peak frequency is 2.72 and the significant wave height calculated by straight linear regression equation was $1.635H_s$.

제주도 북동부 연안에서 추 동계에 관측된 파랑자료를 주파수 분석을 통해 파랑의 특성을 검토하였다. 그리고 최대파고를 산정하기 위해 1차 회귀식을 이용하여 유의파고와 최대파고를 비를 계산하였다. 또한, JONSWAP 스펙트럼을 계산하기 위해 계산 된 유의파고와 첨두주파수를 이용하여 관측해역에 맞는 ${\gamma}$값을 추정하였다. 그 결과, 유의파고의 경우 1 m이하의 파랑이 가장 높은 빈도를 가지고 발생하였으며, 1차 관측 시 평균 0.523 m로 관측이 되었고, 2차 관측 시 평균 0.423 m로 관측이 되었다. 그 중 가장 높은 유의파고는 9월 15일부터 9월 17일까지 발생된 태풍으로 인해 4.8 m로 관측되었다. 첨두주파수의 경우 0.12~0.15 Hz(주기는 약 6.67~8.33초)가 가장 높은 빈도로 나타났으며, 유의파고와 첨두 주파수를 이용하여 계산 된 ${\gamma}$값은 평균 2.72를 나타내고 있다. 또한 직선 회귀 식을 이용해 계산 된 유의파고와 최대파고의 비는 $1.635H_s$로 계산되었다.

Keywords

References

  1. Goda, Y., 1985, "Random seas and design of maritime structures", University of Tokyo press.
  2. Hong, K.H., 2005, "Technology of development of wave energy of commercialization", The ministry of maritime affairs and fisheries, p. 545.
  3. International Standard IEC61400-3, 2009, Part 3: "Design Requirements for Offshore Wind Turbines", pp. 80-81.
  4. Kim, D.Y., 2007, "On individual wave height distribution of ocean waves", The korean socity of ocean engineers Vol. 21, No. 2, pp. 6-11.
  5. Kim, N.H., 2006, "Coastal engineering" pp. 64-78.
  6. Kim, N.H. and Sim, K.S., 2000, "Analysis of spectrum", pp. 9-34.
  7. Kim, N.H., 2004, "Incoming waves design of harbor structures", pp.
  8. Suh, K.D., 2010, "Some statistical characteristics of large deepwater waves around the Korean Peninsula", Coastal Engineering 57(2010) pp. 375-384. https://doi.org/10.1016/j.coastaleng.2009.10.016
  9. Ryu, H.J., 2006, "Study on optimal sites of wave power generation based on numerical wave model", Hongik university department of shipbuilding & ocean engineering Doctorate thesis p. 275.
  10. Ryu, D.H., 2005, "Coast & Harbor engineering", pp. 46-54
  11. Ryu, H.J., 2011, "Wave properties in the Uljin sea area", The society of naval architects of Korea, Vol.2011, No.6, pp. 1810-1814.
  12. Silvester, R., 1974, "Coastal Engineering 1", pp. 65-75.
  13. Kumar, V. S., 2008, "Spectral characteristics of high shallow water waves", pp. 900-911.

Cited by

  1. Modeling and Simulation of a Wave Energy Converter INWAVE vol.7, pp.1, 2017, https://doi.org/10.3390/app7010099
  2. Numerical Modeling and 3D Investigation of INWAVE Device vol.9, pp.4, 2017, https://doi.org/10.3390/su9040523