DOI QR코드

DOI QR Code

Comparison of EEG Characteristics between Dementia Patient and Normal Person Using Frequency Analysis Method

주파수분석법에 의한 치매환자와 정상인의 뇌파특성 비교

  • 장윤석 (부경대학교 전기공학과) ;
  • 박규칠 (부경대학교 정보통신공학과) ;
  • 한동욱 (신라대학교 물리치료학과)
  • Received : 2014.03.12
  • Accepted : 2014.05.15
  • Published : 2014.05.31

Abstract

Nowadays our society is rapidly transforming into an aging society. A better understanding of dementia is a high priority in the aging society. Therefore our study is basically aimed at understanding characteristics of EEG signals from dementia patients. Firstly, we analyzed spontaneous EEG signals from normal persons and dementia patients to distinguish their characteristics. The EEG signals are recorded with 16 electrodes and we classified the EEG signals form the signals according to frequency band. To obtain the clean EEG signals, we used cross correlation function between two channels. From the analysis results, we can observe that the EEG characteristics from dementia patients are distinctly different from that from normal persons.

요즘 우리 사회는 급속히 고령화 사회로 변화되고 있다. 고령화 사회에서는 치매에 대하여 잘 아는 것이 매우 중요한 일이다. 따라서 본 연구는 기본적으로 치매환자로부터 측정한 EEG 신호의 특성을 파악하는 것을 목표로 한다. 먼저 그것을 위하여 치매환자와 정상인의 EEG 특성을 구분하기 위하여 두 그룹의 자발 EEG 신호를 분석하였다. EEG 신호는 16개의 전극으로 계측하였고, 그 신호들은 주파수대역으로 분류하여 분석하였다. 보다 선명한 EEG 신호로 처리하기 위해서는 2개의 채널 간에 상호상관함수를 적용하였다. 그 결과, 치매환자와 정상인의 EEG 신호의 특성은 분명히 다르다는 사실을 확인할 수 있었다.

Keywords

References

  1. Y.-H. Son, J.-O. Park, and H.-S. Hwang, "Research on the effects of the dementia prevention program on the retired seniors in the industrial age," J. of the Korea Institute of Electronic Communication Sciences, vol. 8, no. 10, 2013, pp. 1601-1608. https://doi.org/10.13067/JKIECS.2013.8.10.1601
  2. Y.-S. Jang, S.-L. Lee, and S.-A. Ryu, "Characteristics of frequency band on EEG signal causing human drowsiness," J. of the Korea Institute of Electronic Communication Sciences, vol. 8, no. 6, 2013, pp. 949-954.
  3. J.-M. Jo, "A study on the sensor node based wireless network communication system for efficient EEG transmission," J. of the Korea Institute of Electronic Communication Sciences, vol. 8, no. 5, 2013, pp. 791-796. https://doi.org/10.13067/JKIECS.2013.8.5.791
  4. D.-W. Han, B.-D. Seo, and Y.-M. Son, "Usefulness of quantified-EEG in dementia," J. of the Korean Academy of Physical Therapy Science, vol. 15, no. 3, 2008, pp. 7-19.
  5. U. S. Gasser, V. Rousson, F. Hentschel, H. Sattel, and T. Gasser, "Alzeheimer disease versus mixed dementias : An EEG perspective," Clinical Neurophysiology, vol. 119, pp. 2255-2259, 2008. https://doi.org/10.1016/j.clinph.2008.07.216
  6. L. Pugnetti, F. Baglio, E. Farina, M. Alberoni, E. Calabrese, A. Gambini, E. D. Bella, M. Garegnani, L. Deleonardis, and R. Nemni, "EEG evidence of posterior cortical disconnection in PD and related dementias," Int. J. of Neuroscience, vol. 120, 2010, pp. 88-98. https://doi.org/10.3109/00207450903436346
  7. R. P. Brenner, C. F. Reynolds, and R. F. Ulrich, "Diagnostic efficacy of computerized spectral versus visual EEG analysis in elderly normal, demented and depressed subjects," Electroencephalography and Clinical Neurophysiology, vol. 69, 1988, pp. 110-117. https://doi.org/10.1016/0013-4694(88)90206-4
  8. H. Soiminen, J. Partanen, V. Laulumaa, E. L. Helkala, M. Laakso, and P. J. Riekkinen, "Longitudinal EEG spectral analysis in elderly stage of Alzheimer's disease," Electroencephalography and Clinical Neurophysiology, vol. 72, 1989, pp. 290-297. https://doi.org/10.1016/0013-4694(89)90064-3
  9. B. Szelies, M. Grond, K. Herholz, J. Kessler, T. Wullen, and W. D. Heiss, "Quantitative EEG mapping and PET in Alzheimer's disease," J. of the Neurological Sciences, vol. 110, no. 1-2, 1992, pp. 46-56. https://doi.org/10.1016/0022-510X(92)90008-9
  10. J. P. H. Wade, T. R. Mirsen, V. E. Hachinski, M. Fisman, C. Lau, and H. Merskey, "The clinical diagnosis of Alzheimer's disease," Archives of Neurology, vol. 44, no. 1, 1987, pp. 24-29. https://doi.org/10.1001/archneur.1987.00520130016010
  11. J.-H. Kim and M.-H. Oh, "IT based EMG biofeedback training on the effects of upper extremity function in chronic stroke patients," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 1, 2013, pp. 41-49. https://doi.org/10.13067/JKIECS.2014.9.1.41

Cited by

  1. Sound Frequency Detection Using an Ultra-Low Power MCU vol.5, pp.3, 2017, https://doi.org/10.18178/ijeee.5.3.255-258