DOI QR코드

DOI QR Code

Thinning Intensity Effects on Carbon Storage of Soil, Forest Floor and Coarse Woody Debris in Pinus densiflora Stands

간벌 강도가 소나무림의 토양, 낙엽층 및 고사목 탄소 저장량에 미치는 영향

  • Ko, Suin (Environmental Policy Research Group, Korea Environment Institute) ;
  • Yoon, Tae Kyung (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Kim, Seongjun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Lee, Sang-Tae (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Seo, Kyung Won (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
  • 고수인 (한국환경정책.평가연구원 정책연구본부) ;
  • 윤태경 (고려대학교 대학원 환경생태공학과) ;
  • 김성준 (고려대학교 대학원 환경생태공학과) ;
  • 김춘식 (경남과학기술대학교 산림자원학과) ;
  • 이상태 (국립산림과학원 산림생산기술연구소) ;
  • 서경원 (국립산림과학원 산림생산기술연구소) ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Received : 2013.12.04
  • Accepted : 2014.01.06
  • Published : 2014.03.31

Abstract

This study examined the change in carbon (C) storage of soil, forest floor and coarse woody debris (CWD) for different thinning intensities in Pinus densiflora stands 4 years after the treatment. Two study stands were located in Jeongseon (Stand 1) and Gwangneung Experiment Forest (Stand 2). Three plots for different thinning intensities based on stand density were established at each stand in 2008; control plot (0%), T20 plot (20%) and T30 plot (30%) in Stand 1 and control plot (0%), T39 plot (39%) and T74 plot (74%) in Stand 2, respectively. The C storage of soil (0-50 cm), forest floor and CWD was measured in 2012. Total C storage of T30 plot ($109.80t{\cdot}C{\cdot}ha^{-1}$) was significantly higher than that of control plot ($86.69t{\cdot}C{\cdot}ha^{-1}$) in Stand 1. In stand 2, total C storage of T74 plot ($97.02t{\cdot}C{\cdot}ha^{-1}$) was significantly higher than that of control plot ($72.04t{\cdot}C{\cdot}ha^{-1}$) and T39 plot ($63.25t{\cdot}C{\cdot}ha^{-1}$). Total C storage of the heaviest thinned plot was the highest in each study stand. Since this study examined initial effects of thinning on C storage of soil, forest floor and CWD, further studies would be necessary to evaluate the long-term effects.

본 연구의 목적은 소나무림을 대상으로 간벌 시행 4년 후, 간벌 강도에 따른 토양, 낙엽층, 고사목의 탄소 저장량 변화를 분석하는 것이다. 이를 위하여 강원도 정선군 소재의 소나무림 연구지 1과 경기도 광릉 시험림 내 소나무림 연구지 2를 대상으로 연구를 수행하였다. 2008년에 임분 밀도를 기준으로 간벌 강도를 달리한 3개의 처리구를 각 연구지에 설치하였다. 연구지 1은 대조구(0%), T20 처리구(20%), T30 처리구(30%)로 설계하였으며, 연구지 2는 대조구(0%), T39 처리구(39%), T74 처리구(74%)로 설계하였다. 그리고 2012년에 0-50 cm 깊이의 토양, 낙엽층, 고사목의 탄소 저장량을 측정하였다. 연구지 1에서 토양, 낙엽층, 고사목의 총 탄소 저장량은 T30 처리구($109.80t{\cdot}C{\cdot}ha^{-1}$)가 대조구($86.69t{\cdot}C{\cdot}ha^{-1}$)에 비해 통계적으로 유의하게 높았으며, 연구지 2의 총 탄소 저장량은 T74 처리구($97.02t{\cdot}C{\cdot}ha^{-1}$)가 대조구($72.04t{\cdot}C{\cdot}ha^{-1}$)와 T39 처리구($63.25t{\cdot}C{\cdot}ha^{-1}$)에 비해 통계적으로 유의하게 높았다. 연구지 1과 연구지 2에서 간벌 강도가 가장 강한 처리구의 총 탄소 저장량이 각각 가장 높게 나타났다. 본 연구는 간벌이 토양, 낙엽층, 고사목 탄소 저장량에 미치는 단기간의 영향을 분석한 것이므로 보다 장기적인 영향을 평가할 수 있는 추가 연구가 필요하다.

Keywords

References

  1. Campbell, J., Alberti, G., Martin, J., and Law, B.E. 2009. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. Forest Ecology and Management 257: 453-463. https://doi.org/10.1016/j.foreco.2008.09.021
  2. Chatterjee, A., Vance, G.F., and Tinker, D.B. 2009. Carbon pools of managed and unmanaged stands of ponderosa and lodgepole pine forests in Wyoming. Canadian Journal of Forest Research 39: 1893-1900. https://doi.org/10.1139/X09-112
  3. Clark, D.B., Clark, D.A., Brown, S., Oberbauer, S.F., and Veldkamp, E. 2002. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. Forest Ecology and Management 164: 237-248. https://doi.org/10.1016/S0378-1127(01)00597-7
  4. Duvall, M.D. and Grigal, D.F. 1999. Effects of timber harvesting on coarse woody debris in red pine forests across the Great Lakes states, U.S.A. Canadian Journal of Forest Research 29: 1926-1934. https://doi.org/10.1139/x99-158
  5. Grace, J.M., III, Skaggs, R.W., and Cassel, D.K. 2006. Soil physical changes associated with forest harvesting operations on an organic soil. Soil Science Society of America Journal 70: 503-509. https://doi.org/10.2136/sssaj2005.0154
  6. Harmon, M.E. and Sexton, J. 1996. Guidelines for measurements of woody detritus in forest ecosystems. US LTER Network Office. Seattle, WA, U.S.A. pp. 73.
  7. Hoover, C.M. 2011. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US. Carbon Balance and Management 6: 17. https://doi.org/10.1186/1750-0680-6-17
  8. Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D.W., Minkkinen, K., and Byrne, K.A. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137: 253-268. https://doi.org/10.1016/j.geoderma.2006.09.003
  9. Johnson, D.W. and Curtis, P.S. 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management 140: 227-238. https://doi.org/10.1016/S0378-1127(00)00282-6
  10. Jonard, M., Misson, L., and Ponette, Q. 2006. Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes. Canadian Journal of Forest Research 36: 2684-2695. https://doi.org/10.1139/x06-153
  11. Jones, H.S., Garrett, L.G., Beets, P.N., Kimberley, M.O., and Oliver, G.R. 2008. Impacts of harvest residue management on soil carbon stocks in a plantation forest. Soil Science Society of America Journal 72: 1621-1627. https://doi.org/10.2136/sssaj2007.0333
  12. Jurgensen, M., Tarpey, R., Pickens, J., Kolka, R., and Palik, B. 2012. Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Science Society of America Journal 76: 1418-1425. https://doi.org/10.2136/sssaj2011.0257
  13. Kim, C., Son, Y., Lee, W.K., Jeong, J., and Noh, N.J. 2009. Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. Forest Ecology and Management 257: 1420-1426. https://doi.org/10.1016/j.foreco.2008.12.015
  14. Korea Forest Research Institute. 2010. Survey manual for biomass and soil carbon. Korea Forest Research Institute. Seoul, Korea. pp. 60.
  15. Korea Forest Service. 2012. Statistical yearbook of forestry. Korea Forest Service. Daejeon, Korea. pp. 488.
  16. Lal, R. 2005. Forest soils and carbon sequestration. Forest Ecology and Management 220: 242-258. https://doi.org/10.1016/j.foreco.2005.08.015
  17. Landsberg, J.D., Miller, R.E., Anderson, H.W., and Tepp, J.S. 2003. Bulk density and soil resistance to penetration as affected by commercial thinning in northeastern Washington. USDA Forest Service, Pacific Northwest Research Station. Research Paper PNW-RP-551.
  18. Lee, S.K., Son, Y., Noh, N.J., Heo, S.J., Yoon, T.K., Lee, A.R., Razak, S.A., and Lee, W.K. 2009. Carbon storage of natural pine and oak pure and mixed forests in Hoengseong, Kangwon. Journal of Korean Forest Society 98: 772-779.
  19. Nave, L.E., Vance, E.D., Swanston, C.W., and Curtis, P.S. 2010. Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management 259: 857-866. https://doi.org/10.1016/j.foreco.2009.12.009
  20. Nilsen, P. and Strand, L.T. 2008. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce (Picea abies (L.) Karst.) stand after 33 years. Forest Ecology and Management 256: 201-208. https://doi.org/10.1016/j.foreco.2008.04.001
  21. Nobles, M.M., Dillon Jr., W., and Mbila, M. 2009. Initial response of soil nutrient pools to prescribed burning and thinning in a managed forest ecosystem of northern Alabama. Soil Science Society of America Journal 73: 285-292. https://doi.org/10.2136/sssaj2007.0137
  22. Noh, N.J., Son, Y., Lee, S.K., Seo, K.W., Heo, S.J., Yi, M.J., Park, P.S., Kim, R.H., Son, Y.M., and Lee, K.H. 2010. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea. Science China Life Sciences 53: 822-830. https://doi.org/10.1007/s11427-010-4018-0
  23. Novak, J., Slodi ak, M., Dušek, D., and Kacalek, D. 2013. Norway spruce litterfall and forest floor in the IUFRO thinning experiment CZ 13-Vitkov. Journal of Forest Science 59: 107-116.
  24. Olajuyigbe, S.O., Tobin, B., Gardiner, P., and Nieuwenhuis, M. 2011. Stocks and decay dynamics of above-and belowground coarse woody debris in managed Sitka spruce forests in Ireland. Forest Ecology and Management 262: 1109-1118. https://doi.org/10.1016/j.foreco.2011.06.010
  25. Powers, M., Kolka, R., Palik, B., McDonald, R., and Jurgensen, M. 2011. Long-term management impacts on carbon storage in Lake States forests. Forest Ecology and Management 262: 424-431. https://doi.org/10.1016/j.foreco.2011.04.008
  26. Ruiz-Peinado, R., Bravo-Oviedo, A., Lopez-Senespleda, E., Montero, G., and Rio, M. 2013. Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? European Journal of Forest Research 132: 253-262. https://doi.org/10.1007/s10342-012-0672-z
  27. Selig, M.F., Seiler, J.R., and Tyree, M.C. 2008. Soil carbon and $CO_2$ efflux as influenced by the thinning of loblolly pine (Pinus taeda L.) plantations on the Piedmont of Virginia. Forest Science 54: 58-66.
  28. Shaw, J.N. and Carter, E.A. 2002. Timber harvesting effects on spatial variability of southeastern U.S. Piedmont soil properties. Soil Science 167: 288-302. https://doi.org/10.1097/00010694-200204000-00006
  29. Stromgren, M., Egnell, G., and Olsson, B.A. 2013. Carbon stocks in four forest stands in Sweden 25 years after harvesting of slash and stumps. Forest Ecology and Management 290: 59-66. https://doi.org/10.1016/j.foreco.2012.06.052
  30. Tang, J., Qi, Y., Xu, M., Misson, L., and Goldstein, A.H. 2005. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiology 25: 57-66. https://doi.org/10.1093/treephys/25.1.57

Cited by

  1. Impact of thinning on carbon storage of dead organic matter across larch and oak stands in South Korea vol.9, pp.4, 2016, https://doi.org/10.3832/ifor1776-008
  2. Coarse woody debris respiration of Japanese red pine forests in Korea: controlling factors and contribution to the ecosystem carbon cycle vol.30, pp.4, 2015, https://doi.org/10.1007/s11284-015-1275-1
  3. Below-ground growth characteristics of 13-year-old Pinus densiflora on different contour conditions in a post-fire plantation in Samcheuk, Korea vol.28, pp.5, 2017, https://doi.org/10.1007/s11676-017-0368-9
  4. Effects of Tree Density Control on Carbon Dynamics in Young Pinus densiflora stands vol.105, pp.3, 2016, https://doi.org/10.14578/jkfs.2016.105.3.275
  5. A Meta-analysis on the Effect of Forest Thinning on Diameter Growth and Carbon Stocks in Korea vol.104, pp.4, 2015, https://doi.org/10.14578/jkfs.2015.104.4.527
  6. Differential Effects of Coarse Woody Debris on Microbial and Soil Properties in Pinus densiflora Sieb. et Zucc. Forests vol.8, pp.8, 2017, https://doi.org/10.3390/f8080292
  7. Thinning affects microbial biomass without changing enzyme activity in the soil of Pinus densiflora Sieb. et Zucc. forests after 7 years vol.75, pp.1, 2018, https://doi.org/10.1007/s13595-018-0690-1
  8. Community structure of Korean fir ( Abies koreana ) snag‐dwelling arthropods on Hallasan National Park, Jeju Island, Korea vol.50, pp.2, 2014, https://doi.org/10.1111/1748-5967.12418
  9. Effect of Thinning Intensity on Litterfall of Chamaecyparis obtusa Stand vol.58, pp.None, 2014, https://doi.org/10.29335/tals.2020.58.11