DOI QR코드

DOI QR Code

Initial Development of Forest Structure and Understory Vegetation after Clear-cut in Pinus densiflora Forest in Southern Gangwon-do Province

강원도 남부 지역에서 소나무림 개벌 후 초기 임분 구조 및 하층식생 발달

  • Bae, Kwan Ho (School of Ecology & Environmental System, Kyungpook National University) ;
  • Kim, Jun Soo (Department of Forestry, Kyungpook National University) ;
  • Lee, Change Seok (School of Environment & Life Science, Seoul Women's University) ;
  • Cho, Hyun Je (School of Bioresource Sciences, Andong National University) ;
  • Lee, Ho Young (Forest Recreation and Culture Division, Korea Forest Service) ;
  • Cho, Yong Chan (Plant Conservation Division, Korea National Arboretum)
  • 배관호 (경북대학교 생태환경시스템학부) ;
  • 김준수 (경북대학교 임학과) ;
  • 이창석 (서울여자대학교 환경생명과학부) ;
  • 조현제 (안동대학교 생명자원과학부) ;
  • 이호영 (산림청 산림휴양문화과) ;
  • 조용찬 (국립수목원 산림자원보존과)
  • Received : 2013.10.11
  • Accepted : 2013.12.09
  • Published : 2014.03.31

Abstract

Open- to closed canopy stage and it's ecological characteristics in vegetation succession are commonly described, but poorly understood in Korea. Vegetation development on structure, environment and understory abundance were studied for 16 yr in post-clearcut Pinus densiflora forests in the southern Gangwon-do province by applying space-for-time approach. We sampled 210 plots (10 for structure and 200 for understory) for four seral stages (1yr, 3yr, 10yr and 16yr). After clear-cut, mean stem density increased gradually to $5,714{\pm}645$ stems/ha after 16 years and mean basal area was also from $5.5{\pm}0.7m^2/ha$ after 10 years and doubled at $10.0{\pm}1.6m^2/ha$ in 16 years. Woody debris and bared soil on the forest floor peaked at 11--- after 10 years and at 10.3--- after 3 years, respectively. In understory mean cover declined with all growth form groups following succession, but in richness, forb specie increased with structural development during 16 years. Our study suggested that overstory development did not suppressed whole understory properties especially in richness, thus appeared to act as a filter selectively constraining the understory characteristics. However only long-term studies are essential for elucidating patterns and processes that cannot be inferred form short-term or space-for-time researches. Strong negative relationship between overstory and understory characteristics in conventional models surely reexamined.

천이 모형과 같이 임분 교란 후 수관 닫힘 단계까지의 다양한 생태적 특성 변화에 관한 많은 연구가 있으나 우리나라는 다양한 연구가 수행되고 있지 않다. 본 연구는 강원도 남부 소나무림 개벌 후 임분 구조, 환경 및 하층식생 풍부성의 경시적 변화 추이를 발달 단계별(1yr, 3yr, 10yr 및 16yr)로 분석하였다. 임분구조 분석 결과, 벌채 후, 평균 줄기 밀도는 16yr에 $5,714{\pm}645$ stems/ha 까지 점차 증가하였고, 평균 기저면적 역시 10yr에 $5.5{\pm}0.7m^2/ha$, 그리고 이후 $16yr(10.0{\pm}1.6m^2/ha)$)까지 거의 두 배로 증가함을 알 수 있었다. 숲 바닥의 나무 잔해 및 토양 노출도는 16yr의 11% 및 3yr의 10.3%에서 각각 최고점을 나타낸 후 감소하는 경향이었다. 하층식생 피도는 16년 동안의 임분구조 발달에 따라 모든 생육형에서 모두 감소하는 경향이었으나, 광엽 초본의 종풍부도는 반대로 증가하는 경향을 나타내었다. 특히, 임분의 상층식생 발달은 하층 식생 속성을 억누르기 보다는 필터 역할과 같이 선택적 영향을 미치는 것으로 생각되었다. 본 연구와 더불어 보다 세밀한 생태 속성 변화를 관찰하기 위해서는 임분의 초기 발달 패턴과 과정에 대한 연속 모니터링이 중요하다.

Keywords

References

  1. Alaback, P.B. 1982. Dynamics of understory boimass in Stika spruce-western hemlock forests of southeast Alaska. Ecology 63: 1932-1948. https://doi.org/10.2307/1940131
  2. Barbour, M.G., Burk, J.H., Pitts, W.D., Gilliam, F.S., and Schwartz, M.W. 1998. Terrestrial Plant Ecology 3rd ed. Addison Wesley Longman, Menlo Park, CA, USA.
  3. Bormann, F.H. and Likens, G.E. 1979. Pattern and process in a forested ecosystem. Springer, New York, New York, USA.
  4. Cho, Y.-C., Kim, J.-S., Lee, C.-S., Cho, H.-J., Lee, H.-Y., and Bae, K.-H. 2011a. Early Successional Change of Vegetation Composition After Clear Cutting in Pinus densiflora Stands in Southern Gangwon Province. Journal of Korean Forest Society 100(2): 240-245.
  5. Cho, Y.C., Pee, J.H., Kim, K.S., Koo, B.Y., Cho, H.J., and Lee, C.S. 2011b. Vegetation responses to forest thinning in natural and planted broadleaved forests in southeast Korea: a chronosequence study. Journal of Ecology and Field Biology 34: 347-355. https://doi.org/10.5141/JEFB.2011.036
  6. Christensen, N.L. and Peet, R.K. 1984. Convergence during secondary forest succession. Journal of Ecology 72: 25-36. https://doi.org/10.2307/2260004
  7. Clements, F.E. 1916. Plant succession. Carnegie Institution Publication 242.
  8. Dodson, E.K., Peterson, D.W., and Harrod, R.J. 2008. Understory vegetation response to thinning and burning restoration treatments in dry conifer forests of the eastern Cascades, USA. Forest Ecology and Management 255: 3130-3140, doi:10.1016/j.foreco.2008.01.026.
  9. Franklin, J.F., Spies, T.A., Van Pelt, R., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., and Chen, J. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155: 399-423. https://doi.org/10.1016/S0378-1127(01)00575-8
  10. Fule, P.Z., Laughlin, D.C., and Covington, W.W. 2005. Pineoak forest dynamics five years after ecological restoration treatments, Arizona, USA. Forest Ecology and Management 218: 129-145. https://doi.org/10.1016/j.foreco.2005.07.005
  11. Halpern, C.B. 1988. Early successional pathways and the resistance and resilience of forest communities. Ecology 69: 1703-1715. https://doi.org/10.2307/1941148
  12. Halpern, C.B. 1989 Early successional patterns of forest species: interactions of life history traits and disturbance. Ecology 70: 704-720. https://doi.org/10.2307/1940221
  13. Halpern, C.B. and Lutz, J.A. 2013. Canopy closure exerts weak controls on understory dynamics: a 30-year study of overstory-understory interactions. Ecological Monographs 83: 221-237. https://doi.org/10.1890/12-1696.1
  14. Inouye, R.S., Huntly, J.N., Tilman, D., Tester, J.R., Stillwell, M., and Zinnel, K.C. 1987. Old-field succession on a Minnesota sand plain. Ecology 68: 12-26. https://doi.org/10.2307/1938801
  15. Jules, M.J., Sayer, J.O., and Jules, E.S. 2008. Assessing the relationships between stand development and understory vegetation using a 420-year chronosequence. Forest Ecology and Management 255: 2384-2393. https://doi.org/10.1016/j.foreco.2007.12.042
  16. Korea Forest Service. 2007. Korean plant names index. Korea National Arboretum.
  17. Lee, C.S., Kim, J.H., Yi, H., and You, Y.H. 2004. Seedling establishment and regeneration of Korean red pine (Pinus densiflora S. et Z.) forests in Korea in relation to soil moisture. Forest Ecology and Management 199: 423-432. https://doi.org/10.1016/j.foreco.2004.05.053
  18. Lee, K.S. 2006. Changes of Biomass, Net Primary Productivity and P/B Ratio during Abandoned Field Succession after Shifting Cultivation in Korea. Journal of Ecological and Field Biology 29(3): 237-245. https://doi.org/10.5141/JEFB.2006.29.3.237
  19. Lee, K.S., Choung, Y.S., Kim, S.-C., Shin, S.S., Ro, C.-H., and Park, S.D. 2004. Development of Vegetation Structure after Forest Fire in the East Coastal Region, Korea. Korean journal of ecology 27(2): 99-106. https://doi.org/10.5141/JEFB.2004.27.2.099
  20. Lee, T.B. 1003. Illustrated flora of Korea. Hyang-Mun-sa Press, Seoul. pp. 990.
  21. Metlen, K.L. and Fiedler, C.E. 2006. Restoration treatment effects on the understory of ponderosa pine/Douglas-fir forests in western Montana, USA. Forest Ecology and Management 222: 355-369. https://doi.org/10.1016/j.foreco.2005.10.037
  22. Metlen, K.L., Fiedler, C.E., and Youngblood, A. 2004. Understory responses to fuel reduction treatments in the Blue Mountains of northeastern Oregon. Northwest Science 78: 175-185.
  23. Moola, F.M. and Vasseru, L. 2004. Recovery of late-seral vascula plants in a chronosequence of post-clearcut forest stands in coastal Nova Scotia, Canada. Plant Ecology 172: 183-197. https://doi.org/10.1023/B:VEGE.0000026326.09137.06
  24. Moore, M.M., Casey, C.A., Bakker, J.D., Springer, J.D., Fule, P.Z., and Covington, W.W. 2006. Herbaceous vegetation responses (1992-2004) to restoration treatments in ponderosa pine forest. Rangland Ecology and Management 59: 135-144. https://doi.org/10.2111/05-051R2.1
  25. Nelson, C.R., Halpern, C.B., and Agee, J.K. 2008. Thinning and burning result in limited invasion of nonnative plants but neutral effects on natives. Ecological Applications 18: 762-770. https://doi.org/10.1890/07-0474.1
  26. Pickett, S.T.A. 1989. Space for time substitution as an alternative to long-term studies. In: Likens GE (ed), Longterm studies in ecology. Wiley, Chichester. pp. 71-88.
  27. You, Y.-H. and Lee, C.-S. 2003. Early Vegetation Succession in Abandoned Field in Cheju Island. Korean journal of ecology 26(4): 209-214. https://doi.org/10.5141/JEFB.2003.26.4.209

Cited by

  1. 강원도 남부 지역에서 소나무림 벌채 후 형성된 숲 가장자리의 회복 과정 vol.106, pp.1, 2017, https://doi.org/10.14578/jkfs.2017.106.1.1
  2. 소나무 모수림 시업지의 하층식생 종 조성과 소나무 천연갱신양상 vol.107, pp.1, 2014, https://doi.org/10.14578/jkfs.2018.107.1.25
  3. Changes in Community Structure of Understory Vegetation by Silvicultural Treatments in a Larix kaempferi Plantation Forest vol.54, pp.2, 2014, https://doi.org/10.14397/jals.2020.54.2.25