DOI QR코드

DOI QR Code

Fine Root Biomass in Pinus densiflora Stands using Soil Core Sampling and Minirhizotrons

토양 코어 및 미니라이조트론을 이용한 소나무 임분의 세근 바이오매스 연구

  • Han, Seung Hyun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Yoon, Tae Kyung (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Han, Saerom (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Yun, Soon Jin (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Lee, Sun Jeoung (Center for Forest and Climate Change, Korea Forest Research Institute) ;
  • Kim, Seoungjun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Chang, Hanna (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
  • 한승현 (고려대학교 대학원 환경생태공학과) ;
  • 윤태경 (고려대학교 대학원 환경생태공학과) ;
  • 한새롬 (고려대학교 대학원 환경생태공학과) ;
  • 윤순진 (고려대학교 대학원 환경생태공학과) ;
  • 이선정 (국립산림과학원 기후변화연구센터) ;
  • 김성준 (고려대학교 대학원 환경생태공학과) ;
  • 장한나 (고려대학교 대학원 환경생태공학과) ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Received : 2014.01.22
  • Accepted : 2014.02.26
  • Published : 2014.03.31

Abstract

Fine root distribution was investigated in Pinus densiflora stands using soil core sampling and minirhizotrons, and conversion factors and regression equations were developed for converting minirhizotron data into fine root biomass. Fine root biomass was measured by soil core sampling from October, 2012 to September, 2013 once a month except for the winter, and surface area of fine roots was estimated by minirhizotrons from May to August, 2013 once a month. Fine root biomass and surface area were significantly higher in the upper soil layers than in the lower soil layers. Fine root biomass showed seasonal patterns; the mean fine root biomass ($kg{\cdot}ha^{-1}$) in summer (3,762.4) and spring (3,398.0) was significantly higher than that in autumn (2,551.6). Vertical and seasonal patterns of fine root biomass might be related to the soil bulk density, nutrient content and temperature with soil depth, and seasonal changes of soil and air temperature. Conversion factors (CF) between fine root surface area from minirhizotron data and fine root biomass from soil core sampling were developed for the three soil depths. Then a linear regression equation was developed between the predicted fine root biomass using CF and the measured fine root biomass (y = 79.7 + 0.93x, $R^2=0.81$). We expect to estimate the long-term dynamics of fine roots using CF and regression equation for P. densiflora forests in Korea.

본 연구는 소나무 임분을 대상으로 토양 코어 샘플링과 미니라이조트론 방법을 이용하여 세근의 분포를 파악하고, 미니라이조트론 자료를 세근 바이오매스로 환산할 수 있는 변환계수와 회귀식을 개발하는 목적으로 수행되었다. 토양 코어 샘플링은 2012년 10월부터 2013년 9월까지 겨울을 제외하고 매월 1회씩 총 9회 실시하여 세근 바이오매스를 측정하였고, 미니라이조트론을 이용하여 2013년 5월부터 8월까지 매월 1회씩 총 4회 세근 표면적을 측정하였다. 0-30 cm 토양 깊이에서 세근 바이오매스와 표면적은 지표에 가까울수록 유의하게 높았으며, 계절별 바이오매스($kg{\cdot}ha^{-1}$)는 여름(3,762.4)과 봄(3,398.0)에 가을(2,551.6)보다 유의하게 높은 값을 보였다. 이와 같은 토양 깊이별 분포는 토양의 양분, 용적밀도 그리고 온도 등의 차이 때문으로 사료되며, 계절적 경향은 대기 온도 및 토양 온도변화에 의해 나타나는 것으로 보인다. 또한 토양 깊이별 세근 표면적과 바이오매스 사이의 변환계수를 구하고, 이를 통하여 미니라이조트론 자료를 환산한 세근 바이오매스와 토양 코어 샘플링 자료인 실측값 사이의 선형회귀식(y = 79.7 + 0.93x, $R^2=0.81$)을 개발하였다. 본 연구에서 개발된 변환계수 및 회귀식은 추후 국내 소나무림의 장기적인 세근 동태를 추정하는데 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Block, R.M.A., Van Rees, K.C.J., and Knight, J.D. 2006. A review of fine root dynamics in Populus plantations. Agroforestry Systems 67(1): 73-84. https://doi.org/10.1007/s10457-005-2002-7
  2. Box, J.E. and Ramsuer, E.L. 1993. Minirhizotron wheat root data: Comparisons to soil core root data. Agronomy Journal 85(5): 1058-1060. https://doi.org/10.2134/agronj1993.00021962008500050019x
  3. Bragg, P.L., Govi, G., and Cannell, R.Q. 1983. A comparison of methods, including angled and vertical minirhizotrons, for studying root growth and distribution in a spring oat crop. Plant and Soil 73(3): 435-440. https://doi.org/10.1007/BF02184322
  4. Brown, A.L.P., Day, F.P., and Stover, D.B. 2009. Fine root biomass estimates from minirhizotron imagery in a shrub ecosystem exposed to elevated $CO_2$. Plant and Soil 317(1-2): 145-153. https://doi.org/10.1007/s11104-008-9795-x
  5. Buttner, V. and Leuschner, C. 1994. Spatial and temporal patterns of fine root abundance in a mixed oak-beech forest. Forest Ecology and Management 70(1-3): 11-21. https://doi.org/10.1016/0378-1127(94)90071-X
  6. Cairns, M.A., Brown, S., Helmer, E.H., and Baumgardner, G.A. 1997. Root biomass allocation in the world's upland forests. Oecologia 111(1): 1-11. https://doi.org/10.1007/s004420050201
  7. Finer, L., Ohashi, M., Noguchi, K., and Hirano, Y. 2011. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management 262(11): 2008-2023. https://doi.org/10.1016/j.foreco.2011.08.042
  8. Gregory, P.J. 1979. A periscope method for observing root growth and distribution in field soil. Journal of Experimental Botany 30(1): 205-214. https://doi.org/10.1093/jxb/30.1.205
  9. Hendrick, R.L. and Pregitzer, K.S. 1992. The demography of fine roots in a northern hardwood forest. Journal of Ecology 73(3): 1094-1104. https://doi.org/10.2307/1940183
  10. Hendrick, R.L. and Pregitzer, K.S. 1996a. Applications of minirhizotrons to understand root function in forests and other natural ecosystems. Plant and Soil 185(2): 293-304. https://doi.org/10.1007/BF02257535
  11. Hendrick, R.L. and Pregitzer, K.S. 1996b. Temporal and depthrelated patterns of fine root dynamics in northern hardwood forests. Journal of Ecology 84(2): 167-176. https://doi.org/10.2307/2261352
  12. Hwang, J., Son, Y., Kim, C., Yi, M-J., Kim, Z-S., Lee, W.K., and Hong, S-K. 2007. Fine root dynamics in thinned and limed pitch pine and Japanese larch plantations. Journal of Plant Nutrition 30(11): 1821-1839. https://doi.org/10.1080/01904160701628940
  13. Johnson, M.G., Tingey, D.T., Phillips, D.L., and Storm, M.J. 2001. Advancing fine root research with minirhizotrons. Environmental and Experimental Botany 45(3): 263-289. https://doi.org/10.1016/S0098-8472(01)00077-6
  14. Jose, S., Gillespie, A.R., Seifert, J.R., and Pope, P.E. 2001. Comparison of minirhizotron and soil core methods for quantifying root biomass in a temperate alley cropping system. Agroforestry Systems 52(2): 161-168. https://doi.org/10.1023/A:1010667921970
  15. Joslin, J.D., Gaudinski, J.B., Torn, M.S., Riley, W.J., and Hanson, P.J. 2006. Fine-root turnover patterns and their relationship to root diameter and soil depth in a $^{14}C$-labeled hardwood forest. New Phytologist 172(3): 523-535. https://doi.org/10.1111/j.1469-8137.2006.01847.x
  16. Lopez, B., Sabate, S., and Gracia, C.A. 2001. Annual and seasonal changes in fine root biomass of a Quercus ilex L. forest. Plant and Soil 230(1): 125-134. https://doi.org/10.1023/A:1004824719377
  17. Majdi, H. 1996. Root sampling methods-applications and limitations of the minirhizotron technique. Plant and Soil 185(2): 255-258. https://doi.org/10.1007/BF02257530
  18. Milchunas, D.G. 2009. Estimating root production: comparison of 11 methods in shortgrass steppe and review of biases. Ecosystems 12(8): 1381-1401. https://doi.org/10.1007/s10021-009-9295-8
  19. Nadelhoffer, K.J. and Raich, J.W. 1992. Fine root production estimates and belowground carbon allocation in forest ecosystems. Journal of Ecology 73(4): 1139-1147. https://doi.org/10.2307/1940664
  20. Noguchi, K., Sakata, T., Mizoguchi, T., and Takahashi, M. 2004. Estimation of the fine root biomass in a Japanese cedar (Cryptomeria japonica) plantation using minirhizotrons. Journal of Forest Research 9(3): 261-264. https://doi.org/10.1007/s10310-004-0079-x
  21. Noguchi, K., Takahashi, M., Mizoguchi, T., and Takahashi, M. 2005. Estimating the production and mortality of fine roots in a Japanese cedar (Cryptomeria japonica D. Don) plantation using a minirhizotron technique. Journal of Forest Research 10(6): 435-441. https://doi.org/10.1007/s10310-005-0163-x
  22. Noh, N.J., Kim, C., Bae, S.W., Lee, W.K., Yoon, T.K., Muraoka, H., and Son, Y. 2013. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities. Journal of Plant Ecology 6(5): 368-379. https://doi.org/10.1093/jpe/rtt007
  23. Noh, N.J., Son, Y., Jo, W., Yi, K., Park, C.W., and Han, S. 2012. Preliminary study on estimating fine root growth in a natural Pinus densiflora forest using a minirhizotron technique. Forest Science and Technology 8(1): 47-50. https://doi.org/10.1080/21580103.2012.658233
  24. Norby, R.J. and Jackson, R.B. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytologist 147(1): 3-12. https://doi.org/10.1046/j.1469-8137.2000.00676.x
  25. Pietola, L. and Alakukku, L. 2005. Root growth dynamics and biomass input by Nordic annual field crops. Agriculture, Ecosystems and Environment 108(2): 135-144. https://doi.org/10.1016/j.agee.2005.01.009
  26. Samson, B.K. and Sinclair, T.R. 1994. Soil core and minirhizotron comparison for the determination of root length density. Plant and Soil 161(2): 225-232. https://doi.org/10.1007/BF00046393
  27. SAS Institute Inc., 2009. SAS/STAT 9.2 user's guide. SAS institute Inc., Cary.
  28. Steele, S.J., Gower, S.T., Vogel, J.G., and Norman, J.M. 1997. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology 17(8-9): 577-587. https://doi.org/10.1093/treephys/17.8-9.577
  29. Strand, A.E., Pritchard, S.G., McCormack, M.L., Davis, M.A., and Oren, R. 2008. Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319(5862): 456-458. https://doi.org/10.1126/science.1151382
  30. Vanninen, P. and Makela, A. 1999. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiology 19(12): 823-830. https://doi.org/10.1093/treephys/19.12.823
  31. Zhang, F., Chen, J., and Wang, M. 2012. The spatial distribution and seasonal dynamics of fine roots in a young Caragana korshinskii plantation. Acta Ecologica Sinica 32(17): 5484-5493. https://doi.org/10.5846/stxb201111041669

Cited by

  1. Estimating the production and mortality of fine roots using minirhizotrons in a Pinus densiflora forest in Gwangneung, Korea vol.27, pp.5, 2016, https://doi.org/10.1007/s11676-016-0221-6