DOI QR코드

DOI QR Code

Synthesis and characterization of silk fibroin-bioactive glass hybrid xerogels

  • Wu, Xiaohong (School and Hospital of Stomatology, Fujian Medical University) ;
  • Yan, Fuhua (Institute and Hospital of Stomatology, Nanjing University Medical School) ;
  • Liu, Wei (College of Materials Science and Engineering, Fuzhou University) ;
  • Zhan, Hongbing (College of Materials Science and Engineering, Fuzhou University) ;
  • Yang, Wenrong (School of Life and Environmental Science, Waurn Ponds Campus, Geelong Deakin University)
  • 투고 : 2013.11.29
  • 심사 : 2014.04.04
  • 발행 : 2014.06.25

초록

This study aimed to develop a novel bioactive hybrid xerogel consisting of silk fibroin /$SiO_2-CaO-P_2O_5$ by sol-gel process at room temperature. Scanning electron microscopy (SEM), FT-IR Spectroscopy, pore measurement, mechanical property testing, in vitro bioactivity test and cytotoxicity assay were performed to characterize the xerogel for bone tissue engineering application. We have found that the xerogel possessed excellent pore structures and mechanical property. Once immersed in a simulated fluid (SBF), the xerogel exhibited profound bioactivity by inducing hydroxyapatite layers on its surfaces. The cell toxicity study also demonstrated that there was little toxic to MC3T3-E1 cells. These results indicate that silk fibroin /$SiO_2-CaO-P_2O_5$ hybrid xerogel potentially could be used as a bone tissue engineering material.

키워드

과제정보

연구 과제 주관 기관 : Nanjing University Medical School

참고문헌

  1. Altman, G.H., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J., Lu, H., Richmond, J. and Kaplan, D.L. (2003), "Silk-based biomaterials", Biomater., 24(3), 401-16. https://doi.org/10.1016/S0142-9612(02)00353-8
  2. Arcos, D. and Vallet-Regi, M. (2010), "Sol-gel silica-based biomaterials and bone tissue regeneration", Acta. Biomater., 6(8), 2874-88. https://doi.org/10.1016/j.actbio.2010.02.012
  3. Bi, L., Jung, S., Day, D., Neidig, K., Dusevich, V. Eick, D. and Bonewald, L. (2012), "Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds", J. Biomed. Mater. Res. A., 100(12), 3267-75.
  4. Deng, X., Hao, J. and Wang, C. (2001), "Preparation and mechanical properties of nanocomposites of poly (D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals", Biomater., 22(21), 2867-73. https://doi.org/10.1016/S0142-9612(01)00031-X
  5. Fu, Q., Rahaman, M.N., Fu, H. and Liu, X. (2010), "Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation", J. Biomed. Mater. Res. A., 95(1), 164-71.
  6. Goldstein, S.A., Wilson, D.L., Sonstegard, D.A. and Matthews, L.S. (1983), "The mechanical properties of human tibial trabecular bone as a function of metaphyseal location", J. Biomech., 16(12), 965-9. https://doi.org/10.1016/0021-9290(83)90097-0
  7. Grabowski, G. and Cornet, C.A. (2013), "Bone graft and bone graft substitutes in spinesurgery: current concepts and controversies", J. Am. Acad. Orthop. Surg., 21(1), 51-60. https://doi.org/10.5435/JAAOS-21-01-51
  8. Hench, L.L. (2006), "The story of bioglass", J. Mater. Sci. Mater. Med., 17(11), 967-78. https://doi.org/10.1007/s10856-006-0432-z
  9. Jones, J.R., Ehrenfried, L.M. and Hench, L.L. (2006), "Optimising bioactive glass scaffolds for bone tissue engineering", Biomater., 27(7), 964-73. https://doi.org/10.1016/j.biomaterials.2005.07.017
  10. Jones, J.R. and Hench, L.L. (2001), "Biomedical materials for new millennium: perspective on the future", Mater. Sci. Tech., 17(8), 891-900. https://doi.org/10.1179/026708301101510762
  11. Kokubo, T. and Takadama, H. (2006), "How useful is SBF in predicting in vivo bone bioactivity Biomaterials", Biomater., 27(15), 2907-15. https://doi.org/10.1016/j.biomaterials.2006.01.017
  12. Lee, E.J., Shin, D.S., Kim, H.E., Kim, H.W., Koh, Y.H. and Jang, J.H. (2009), "Membrane of hybrid chitosan-silica xerogel for guided bone regeneration", Biomater., 30(5), 743-50. https://doi.org/10.1016/j.biomaterials.2008.10.025
  13. Liu, W., Wu, X.H., Zhan, H.B. and Yan, F.H. (2012), "Synethesis of bioactivity poly (ethylene glycol) /SiO2-CaO-P2O5 hybrid xerogels for bone regeneration", Mater. Sci. Eng., C., 32(4), 707-711. https://doi.org/10.1016/j.msec.2012.01.012
  14. Lovett, M., Cannizzaro, C., Daheron, L., Messmer, B., Vunjak-Novakovic, G. and Kaplan, D.L. (2007), "Silk fibroin microtubes for blood vessel engineering", Biomater., 28(35), 5271-9. https://doi.org/10.1016/j.biomaterials.2007.08.008
  15. Mathur, A.B. and Gupta, V. (2010), "Silk fibroin-derived nanoparticles for biomedical applications", Nanomedicine, 5(5), 807-20. https://doi.org/10.2217/nnm.10.51
  16. Rahaman, M.N., Day, D.E., Bal, B.S., Fu, Q., Jung, S.B., Bonewald, L.F. and Tomsia, A.P. (2011), "Bioactive glass in tissue engineering", Acta. Biomater., 7(6), 2355-73. https://doi.org/10.1016/j.actbio.2011.03.016
  17. Thian, E.S. and Best, S.M. (2008), "Materials viewpoints in bone regenerative medicine: progress and prospects", Materi. Sci. Tech., 24(9), 1027-1030(4). https://doi.org/10.1179/174328408X341717
  18. Thiwawong, T. And Nukeaw, J. (2009), "Organic/inorganic multilayer hybrid thin films: effect of substrate temperature", Mater. Res. Innov., 13(3), 165-167. https://doi.org/10.1179/143307509X437518
  19. Vallet-Regi, M, Colilla, M. and Gonzalez, B. (2011), "Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics", Chem. Soc. Rev., 40(2), 596-607. https://doi.org/10.1039/C0CS00025F
  20. Will, J., Gerhardt, L.C. and Boccaccini, A.R. (2012), "Bioactive glass-based scaffolds for bone tissue engineering", Adv. Biochem. Eng. Biotech., 126, 195-226.
  21. Zhai, H. Quan, Y., Li, L., Liu, X.Y., Xu, X, and Tang, R. (2013), "Spontaneously amplified homochiral organic-inorganic nano-helix complexes via self-proliferation", Nanoscale, 5(7), 3006-12. https://doi.org/10.1039/c3nr33782k