DOI QR코드

DOI QR Code

Quantitative Conductivity Estimation Error due to Statistical Noise in Complex $B_1{^+}$ Map

정량적 도전율측정의 오차와 $B_1{^+}$ map의 노이즈에 관한 분석

  • Shin, Jaewook (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Joonsung (SIRIC, Yonsei University) ;
  • Kim, Min-Oh (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Choi, Narae (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Seo, Jin Keun (Department of Computer Science & Engineering, Yonsei University) ;
  • Kim, Dong-Hyun (Department of Electrical and Electronic Engineering, Yonsei University)
  • 신재욱 (연세대학교 전기전자공학) ;
  • 이준성 (연세대학교 뇌심혈관질환융합연구사업단) ;
  • 김민오 (연세대학교 전기전자공학) ;
  • 최나래 (연세대학교 전기전자공학) ;
  • 서진근 (연세대학교 계산과학공학) ;
  • 김동현 (연세대학교 전기전자공학)
  • Received : 2014.08.19
  • Accepted : 2014.10.02
  • Published : 2014.12.31

Abstract

Purpose : In-vivo conductivity reconstruction using transmit field ($B_1{^+}$) information of MRI was proposed. We assessed the accuracy of conductivity reconstruction in the presence of statistical noise in complex $B_1{^+}$ map and provided a parametric model of the conductivity-to-noise ratio value. Materials and Methods: The $B_1{^+}$ distribution was simulated for a cylindrical phantom model. By adding complex Gaussian noise to the simulated $B_1{^+}$ map, quantitative conductivity estimation error was evaluated. The quantitative evaluation process was repeated over several different parameters such as Larmor frequency, object radius and SNR of $B_1{^+}$ map. A parametric model for the conductivity-to-noise ratio was developed according to these various parameters. Results: According to the simulation results, conductivity estimation is more sensitive to statistical noise in $B_1{^+}$ phase than to noise in $B_1{^+}$ magnitude. The conductivity estimate of the object of interest does not depend on the external object surrounding it. The conductivity-to-noise ratio is proportional to the signal-to-noise ratio of the $B_1{^+}$ map, Larmor frequency, the conductivity value itself and the number of averaged pixels. To estimate accurate conductivity value of the targeted tissue, SNR of $B_1{^+}$ map and adequate filtering size have to be taken into account for conductivity reconstruction process. In addition, the simulation result was verified at 3T conventional MRI scanner. Conclusion: Through all these relationships, quantitative conductivity estimation error due to statistical noise in $B_1{^+}$ map is modeled. By using this model, further issues regarding filtering and reconstruction algorithms can be investigated for MREPT.

목적: 자기공명 영상장치(MRI)의 송신 자기장 정보를 이용한 인체 내 도전율을 측정하는 기술이 최근 제안되었다. 송신 자기장 정보의 노이즈에 따른 도전율의 오차를 측정하고 도전율과 노이즈의 관계를 모델화 하였다. 대상과 방법: 송신 자기장의 분포는 원형 모델에 대해서 시뮬레이션을 수행하였다. 시뮬레이션으로 생성된 송신 자기장의 분포에 가우시안 노이즈를 더해준 후 정량적인 도전율 측정에 어떤 영향을 주는지 공명 주파수, 물체의 크기, 송신 자기장의 신호 대 잡음 비에 대해서 수행하였다. 각 각의 변수에 따른 도전율 대 잡음 비를 측정하여 모델화 하였다. 결과: 시뮬레이션 결과 도전율 측정은 송신 주파수의 크기 오차보다 위상 오차에 더 큰 영향을 받는 것을 보였다. 또한, 송신 자기장의 신호 대 잡음 비, 공명 주파수, 도전율 값, 평균필터의 크기에 따라서 도전율 대 잡음비가 비례하는 경향성을 보였다. 하지만, 물체를 둘러싼 외부 물질의 크기는 도전율 측정에 큰 영향을 주지 않았다. 위의 시뮬레이션 결과는 3T 임상용 MRI에서 원형 모델 팬텀에 대해서 검증되었다. 결론: 시뮬레이션을 통해 얻어진 변수와 도전율 측정의 오차와의 관계를 통해서 정량적인 도전율 측정에서 발생되는 오차를 모델화 할 수 있었다. 또한 제시된 분석 방법을 통하여 자기공명 영상 장치를 이용한 도전율 측정의 필터링 및 재구성 알고리즘의 효과를 검증 할 수 있을 것으로 보인다.

Keywords

References

  1. Haacke EM, Petropoulos LS, Nilges EW, Wu DH. Extraction of conductivity and permittivity using magnetic resonance imaging. Phys Med Biol 1991;36:723-734 https://doi.org/10.1088/0031-9155/36/6/002
  2. Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O. Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 2009;28:1365-1374 https://doi.org/10.1109/TMI.2009.2015757
  3. Joines WT, Zhang Y, Li C, Jirtle RL. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys 1994;21:547-550 https://doi.org/10.1118/1.597312
  4. Schaefer M, Gross W, Ackemann J, Gebhard MM. The complex dielectric spectrum of heart tissue during ischemia. Bioelectro- chemistry 2002;58:171-180 https://doi.org/10.1016/S1567-5394(02)00152-4
  5. Haemmerich D, Staelin ST, Tsai JZ, Tungjitkusolmun S, Mahvi DM, Webster JG. In vivo electrical conductivity of hepatic tumours. Physiol Meas 2003;24:251-260 https://doi.org/10.1088/0967-3334/24/2/302
  6. Fallert MA, Mirotznik MS, Downing SW, et al. Myocardial electrical-impedance mapping of iscemic sheep hearts and healing aneurysm. Circulation 1993;87:199-207 https://doi.org/10.1161/01.CIR.87.1.199
  7. Voigt T, Homann H, Katscher U, Doessel O. Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 2012;68:1117-1126 https://doi.org/10.1002/mrm.23322
  8. Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007;57: 192-200 https://doi.org/10.1002/mrm.21120
  9. Voigt T, Nehrke K, Doessel O, Katscher U. T1 corrected B1 mapping using multi-TR gradient echo sequences. Magn Reson Med 2010;64:725-733 https://doi.org/10.1002/mrm.22333
  10. Stollberger R, Wach P. Imaging of the active B1 field in vivo. Magn Reson Med 1996;35:246-251 https://doi.org/10.1002/mrm.1910350217
  11. Sacolick LI, Wiesinger F, Hancu I, Vogel MW. B1 mapping by Bloch-Siegert shift. Magn Reson Med 2010;63:1315-1322 https://doi.org/10.1002/mrm.22357
  12. Kim DH, Gho SM, Choi N, Liu C. Simultaneous Electromagnetic Property Imaging using multiecho gradient echo. In: Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 2012 p 3464
  13. Voigt T, Katscher U, Doessel O. Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography. Magn Reson Med 2011;66:456-466 https://doi.org/10.1002/mrm.22832
  14. Bulumulla SB, Lee S, Yeo DTB. Conductivity and permittivity imaging at 3.0 T. Concept Magn Reson B 2012;41B(1):13-21 https://doi.org/10.1002/cmr.b.21204
  15. van Lier AL, Brunner DO, Pruessmann KP, et al. B1(+) phase mapping at 7 T and its application for in vivo electrical conductivity mapping. Magn Reson Med 2012;67:552-561 https://doi.org/10.1002/mrm.22995
  16. Seo JK, Kim MO, Lee J, et al. Error analysis of nonconstant admittivity for MR-based electric property imaging. IEEE Trans Med Imaging 2012;31:430-437 https://doi.org/10.1109/TMI.2011.2171000
  17. van Lier AL, Voigt T, Katscher U, van den Berg CA. Comparing Electric Properties Tomography at 1.5, 3 and 7 T. In: Proceedings of the 19th Annual Meeting of ISMRM, Montreal, Canada, 2011 p 125
  18. van den Bergen B, Stolk CC, Berg JB, Lagendijk JJ, Van den Berg CA. Ultra fast electromagnetic field computations for RF multi-transmit techniques in high field MRI. Phys Med Biol 2009;54:1253-1264 https://doi.org/10.1088/0031-9155/54/5/010
  19. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910-914 https://doi.org/10.1002/mrm.1910340618
  20. Morrell GR, Schabel MC. An analysis of the accuracy of magnetic resonance flip angle measurement methods. Phys Med Biol 2010;55:6157-6174 https://doi.org/10.1088/0031-9155/55/20/008
  21. http://niremf.ifac.cnr.it/tissprop/
  22. Stogryn A. Equations for calculating the dielectric constant of saline water. IEEE Trans Microwave Theory Tech 1971;19:733- 736 https://doi.org/10.1109/TMTT.1971.1127617
  23. Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 1996;41:2251-2269 https://doi.org/10.1088/0031-9155/41/11/002
  24. Zypman FR. MRI electromagnetic field penetration in cylindrical objects. Comput Biol Med 1996;26:161-175 https://doi.org/10.1016/0010-4825(95)00037-2

Cited by

  1. Error analysis of helmholtz‐based MR‐electrical properties tomography vol.80, pp.1, 2014, https://doi.org/10.1002/mrm.27004
  2. Redesign of the Laplacian kernel for improvements in conductivity imaging using MRI vol.81, pp.3, 2014, https://doi.org/10.1002/mrm.27528