DOI QR코드

DOI QR Code

Clinical Applications of Neuroimaging with Susceptibility Weighted Imaging: Review Article

SWI의 신경영상분야의 임상적 이용

  • Roh, Keuntak (Department of Radiology, Seoul Veterans Hospital) ;
  • Kang, Hyunkoo (Department of Radiology, Seoul Veterans Hospital) ;
  • Kim, Injoong (Department of Radiology, Seoul Veterans Hospital)
  • 노근탁 (중앙보훈병원 영상의학과) ;
  • 강현구 (중앙보훈병원 영상의학과) ;
  • 김인중 (중앙보훈병원 영상의학과)
  • Received : 2014.11.18
  • Accepted : 2014.12.23
  • Published : 2014.12.31

Abstract

Purpose : Susceptibility-weighted magnetic resonance (MR) sequence is three-dimensional (3D), spoiled gradient-echo pulse sequences that provide a high sensitivity for the detection of blood degradation products, calcifications, and iron deposits. This pictorial review is aimed at illustrating and discussing its main clinical applications. Materials and Methods: SWI is based on high-resolution, 3D, fully velocity-compensated gradient-echo sequences using both magnitude and phase images. To enhance the visibility of the venous structures, the magnitude images are multiplied with a phase mask generated from the filtered phase data, which are displayed at best after post-processing of the 3D dataset with the minimal intensity projection algorithm. A total of 200 patients underwent MR examinations that included SWI on a 3 tesla MR imager were enrolled. Results: SWI is very useful in detecting multiple brain disorders. Among the 200 patients, 80 showed developmental venous anomaly, 22 showed cavernous malformation, 12 showed calcifications in various conditions, 21 showed cerebrovascular accident with susceptibility vessel sign or microbleeds, 52 showed brain tumors, 2 showed diffuse axonal injury, 3 showed arteriovenous malformation, 5 showed dural arteriovenous fistula, 1 showed moyamoya disease, and 2 showed Parkinson's disease. Conclusion: SWI is useful in detecting occult low flow vascular lesions, calcification and microbleed and characterising diverse brain disorders.

목적: 자화율 강조 자기공명영상 (Susceptibility-weighted imaging)은 혈액분해산물, 석회화, 철 침착물을 발견하는데 있어 높은 민감도를 보이는 3D spoiled gradient-echo pulse sequence 이다. 본 임상화보는 자화율 강조 자기공명영상의 주된 임상적 적용에 대해 설명하고 논의하는 데에 그 목적이 있다. 대상과 방법: 자화율 강조 자기공명영상은 자기강도영상 (magnitude image)과 위상영상 (phase image)을 이용한 고해상도, 3D fully velocity-compensated gradient-echo sequence 에 기초를 두고 있다. 정맥 구조물의 가시성을 향상시키기 위해, 자기강도영상은 여과된 위상 데이터 (phase data) 로부터 발생된 위상 마스크 (phase mask)를 이용해 증폭되고, 이것은 최소강도투사 (Minimal intensive projection) 알고리즘을 이용한 3D dataset 후처리 과정을 거치게 된다. 3T 자기공명기기에서 SWI를 포함하는 자기공명영상 검사를 시행한 총 200명의 환자를 대상으로 연구하였다. 결과: 자화율 강조 자기공명영상은 다양한 뇌 질환의 발견에 매우 유용하였다. 200명의 환자 중 80명은 선천성 정맥 기형, 22명은 해면상 혈관종, 12명은 다양한 질환에서의 석회화, 21명은 혈관자화 징후 (susceptibility vessel sign) 또는 미세출혈을 동반하는 뇌혈관 질환, 52명은 뇌종양, 2명은 미만성 축삭 손상, 3명은 동정맥 기형, 5명은 뇌경막 동정맥루, 1명은 모야모야병, 그리고 2명은 파킨슨병이 관찰되었다. 결론: 자화율 강조 자기공명영상은 미세 저혈량 혈관성 병변, 석회화 그리고 미세출혈과 다양한 뇌병변의 진단에 유용하다.

Keywords

References

  1. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 1997;204:272-277 https://doi.org/10.1148/radiology.204.1.9205259
  2. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009;30:19-30
  3. Wang D, Li WB, Wei XE, Li YH, Dai YM. An investigation of age-related iron deposition using susceptibility weighted imaging. PLoS One. 2012;7:e50706. doi: 10.1371/journal.pone. 0050706. Epub 2012 30
  4. Sehgal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibility weighted imaging. J Magn Reson Imaging 2005; 22:439-450 https://doi.org/10.1002/jmri.20404
  5. Sarwar M, McCormick W. Intracerebral venous angioma: case report and review. Arch Neurol 1978;35:323-325 https://doi.org/10.1001/archneur.1978.00500290069012
  6. Kaplan HA, Aronson SM, Browder EJ. Vascular malformations of the brain. An anatomical study. J Neurosurg 1961;18:630-635 https://doi.org/10.3171/jns.1961.18.5.0630
  7. Wu Z, Mittal S, Kish K, Yu Y, Hu J, Haacke EM. Identification of calcification with magnetic resonance imaging using susceptibility- weighted imaging: a case study. J Magn Reson Imaging 2009;29:177-182 https://doi.org/10.1002/jmri.21617
  8. Santhosh K, Kesavadas C, Thomas B, Gupta AK, Thamburaj K, Kapilamoorthy TR. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke. Clin Radiol 2009;64:74-83 https://doi.org/10.1016/j.crad.2008.04.022
  9. Radbruch A, Graf M, Kramp L, et al. Differentiation of brain metastases by percentagewise quantification of intratumoralsusceptibility- signals at 3Tesla. Eur J Radiol 2012;81:4064- 4068. doi: 10.1016/j.ejrad.2012.06.016. Epub 2012 12
  10. Sehgal V, Delproposto Z, Haddar D, et al. Susceptibilityweighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 2006;24:41-51 https://doi.org/10.1002/jmri.20598
  11. Horie N, Morikawa M, Nozaki A, Hayashi K, Suyama K, Nagata I. "Brush Sign" on susceptibility-weighted MR imaging indicates the severity of moyamoya disease. AJNR Am J Neuroradiol 2011;32:1697-1702. doi: 10.3174/ajnr.A2568. Epub 2011 28.
  12. Thomas B, Somasundaram S, Thamburaj K, et al. Clinical applications of susceptibility weighted MR imaging of the brain - a pictorial review. Neuroradiology 2008;50:105-116 https://doi.org/10.1007/s00234-007-0316-z
  13. Bartzokis G, Cummings JL, Markham CH, et al. MRI evaluation of brain iron in earlier- and later-onset Parkinson's disease and normal subjects. Magn Reson Imaging 1999;17:213-222 https://doi.org/10.1016/S0730-725X(98)00155-6
  14. Tong KA, Ashwal S, Holshouser BA, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury:improved detection and initial results. Radiology 2003;227:332-339 https://doi.org/10.1148/radiol.2272020176