DOI QR코드

DOI QR Code

Synthesis and Surface-Enhanced Raman Scattering Property of Pentagonal Dodecahedral Au Nanocrystals

  • Kim, Minjung (Department of Chemistry and KI for the NanoCentury, KAIST) ;
  • Jeong, Gyoung Hwa (Department of Chemistry and KI for the NanoCentury, KAIST) ;
  • Lee, Young Wook (Department of Chemistry and KI for the NanoCentury, KAIST) ;
  • Han, Sang Woo (Department of Chemistry and KI for the NanoCentury, KAIST)
  • Received : 2013.09.30
  • Accepted : 2013.10.03
  • Published : 2014.03.20

Abstract

Keywords

Experimental

In a typical synthesis of PD Au NCs, an aqueous solution (10 mM, 1 mL) of HAuCl4·3H2O (99.9+%, Aldrich) was added to 25 mL of DMF. This solution was heated at 90 °C for about 2 h in a conventional forced-convection drying oven. Then, an aqueous solution (50 mg/mL, 1 mL) of PVP (Mw = 630,000, Fluka) was quickly injected into the reaction solution and further heated for 6 h. The prepared NCs were separated by centrifugation, and then washed thoroughly with water and ethanol.

FESEM images of the sample were taken with a fieldemission scanning electron microscope (Phillips Model XL30 S FEG). TEM images were obtained with a Tecnai G2 F30 transmission electron microscope operating at 300 kV after placing a drop of NC solution on a carbon-coated Cu grid (200 mesh). XRD patterns were obtained with a Bruker AXS D8 DISCOVER diffractometer using Cu Kα (0.1542 nm) radiation. Raman spectra were obtained using a Jobin Yvon/HORIBA LabRAM spectrometer equipped with an integral microscope (Olympus BX 41). The 632.8 nm line of an air-cooled He/Ne laser was used as an excitation source. Raman scattering was detected with 180° geometry using an air-cooled 1024 × 256 pixel charged coupled device (CCD) detector. The Raman band of a silicon wafer at 520 cm−1 was used to calibrate the spectrometer. SERS sample was prepared by dropping 30 μL of a 0.1 mM ethanol solution of 4- ABT or BT onto the drop-casting film of NCs on a Si substrate. After 1 h, it was washed with ethanol and dried under ambient condition.

References

  1. Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. Angew. Chem. Int. Ed. 2004, 43, 3673. https://doi.org/10.1002/anie.200454216
  2. Kim, D.-S.; Heo, J.; Ahn, S.-H.; Han, S. W.; Yun, W. S.; Kim, Z. H. Nano Lett. 2009, 9, 3619. https://doi.org/10.1021/nl901839f
  3. (a) Heo, J.; Kim, D.-S.; Kim, Z. H.; Lee, Y. W.; Kim, D.; Kim, M.; Kwon, K.; Park, H. J.; Yun, W. S.; Han, S. W. Chem. Commun. 2008, 6120.
  4. (b) Kim, D.; Heo, J.; Kim, M.; Lee, Y. W.; Han, S. W. Chem. Phys. Lett. 2009, 468, 245. https://doi.org/10.1016/j.cplett.2008.12.028
  5. (a) Kown, K.; Lee, K. Y.; Lee, Y. W.; Kim, M.; Heo, J.; Ahn, S. J.; Han, S. W. J. Phys. Chem. C 2007, 111, 1161. https://doi.org/10.1021/jp064317i
  6. (b) Kown, K.; Lee, K. Y.; Kim, M.; Lee, Y. W.; Heo, J.; Ahn, S. J.; Han, S. W. Chem. Phys. Lett. 2006, 432, 209. https://doi.org/10.1016/j.cplett.2006.10.058
  7. (c) Lee, K. Y.; Lee, Y. W.; Lee, J.-H.; Han, S. W. Colloid Surface A 2010, 372, 146. https://doi.org/10.1016/j.colsurfa.2010.10.019
  8. Seo, D.; Park, J. C.; Song, H. J. Am. Chem. Soc. 2006, 128, 14863. https://doi.org/10.1021/ja062892u
  9. Chen, Y.; Gu, X.; Nie, C.-G.; Jiang, Z.-Y.; Xie, Z.-X.; Lin, C.-J. Chem. Commum. 2005, 4181.
  10. Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Adv. Mater. 2012, 24, 4811. https://doi.org/10.1002/adma.201201690
  11. (a) Lee, K. Y.; Kim, M.; Lee, Y. W.; Choi, M. Y.; Han, S. W. Bull. Korean Chem. Soc. 2007, 28, 2514. https://doi.org/10.5012/bkcs.2007.28.12.2514
  12. (b) Heo, J.; Lee, Y. W.; Kim, M.; Yun, W. S.; Han, S. W. Chem. Commun. 2009, 1981.
  13. Jeong, G. H.; Kim, M.; Lee, Y. W.; Choi, W.; Oh, W. T.; Park, Q.; Han, S. W. J. Am. Chem. Soc. 2009, 131, 1672. https://doi.org/10.1021/ja809112n
  14. Kim, D. Y.; Im, S. H.; Park. O. O. Cryst. Growth Des. 2010, 10, 3321. https://doi.org/10.1021/cg100639s
  15. Hong, J. W.; Lee, S.-U.; Lee, Y. W.; Han, S. W. J. Am. Chem. Soc. 2012, 134, 4565. https://doi.org/10.1021/ja300598u
  16. Phillips, F. C. An Introduction to Crystallography; John Wiley & Sons: New York, 1972.
  17. (a) Baranrd, A. S.; Russo, S. P. J. Phys. Chem. C 2009, 113, 5376.
  18. (b) Ohashi, W.; Spaepen, F. Nature 1987, 330, 555. https://doi.org/10.1038/330555a0
  19. (a) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153. https://doi.org/10.1021/jp993593c
  20. (b) Wang, Z. L.; Gao, R. P.; Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. B 2000, 104, 5417. https://doi.org/10.1021/jp000800w
  21. Jeong, G. H.; Lee, Y. W.; Kim, M; Han, S. W. J. Colloid Interf. Sci. 2009, 329, 97. https://doi.org/10.1016/j.jcis.2008.10.004
  22. Wang, H.; Halas, N. J. Adv. Mater. 2008, 20, 82.