References
- Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841-857. https://doi.org/10.1105/tpc.9.6.841
- Bailey, T.L., and Elkan, C. (1995). The value of prior knowledge in discovering motifs with MEM. Proceedings/international conference on intelligent systems for molecular biology. ISMB 3, 21-29.
- Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., and Weigel, D. (1998). Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791-800. https://doi.org/10.1105/tpc.10.5.791
- Busk, P.K., and Pages, M. (1997). Protein binding to the abscisic acid-responsive element is independent of VIVIPAROUS1 in vivo. Plant Cell 9, 2261-2270. https://doi.org/10.1105/tpc.9.12.2261
- Choe, S. (2006). Brassinosteroid biosynthesis and inactivation. Physiol. Plant. 126, 539-548. https://doi.org/10.1111/j.1399-3054.2006.00681.x
- Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., and Feldmann, K.A. (2001). Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 26, 573-582. https://doi.org/10.1046/j.1365-313x.2001.01055.x
- Choe, S., Schmitz, R.J., Fujioka, S., Takatsuto, S., Lee, M.O., Yoshida, S., Feldmann, K.A., and Tax, F.E. (2002). Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3-like kinase. Plant Physiol. 130, 1506-1515. https://doi.org/10.1104/pp.010496
- Christianson, J.A., Dennis, E.S., Llewellyn, D.J., and Wilson, I.W. (2010). ATAF NAC transcription factors: regulators of plant stress signaling. Plant Sig. Behav. 5, 428-432. https://doi.org/10.4161/psb.5.4.10847
- Chung, Y., and Choe, S. (2013). The Regulation of Brassinosteroid Biosynthesis in Arabidopsis. Crit. Rev. Plant Sci. 32, 396-410. https://doi.org/10.1080/07352689.2013.797856
- Chung, Y., Maharjan, P.M., Lee, O., Fujioka, S., Jang, S., Kim, B., Takatsuto, S., Tsujimoto, M., Kim, H., Cho, S., et al. (2011). Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J. 66, 564-578. https://doi.org/10.1111/j.1365-313X.2011.04513.x
- Chung, Y., Choe, V., Fujioka, S., Takatsuto, S., Han, M., Jeon, J.S., Park, Y.I., Lee, K.O., and Choe, S. (2012). Constitutive activation of brassinosteroid signaling in the Arabidopsis elongated-D/bak1 mutant. Plant Mol. Biol. 80, 489-501. https://doi.org/10.1007/s11103-012-9963-5
- Clouse, S.D., and Sasse, J.M. (1998). BRASSINOSTEROIDS:Essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 427-451. https://doi.org/10.1146/annurev.arplant.49.1.427
- De Rybel, B., Audenaert, D., Vert, G., Rozhon, W., Mayerhofer, J., Peelman, F., Coutuer, S., Denayer, T., Jansen, L., Nguyen, L., et al. (2009). Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem. Biol. 16, 594-604. https://doi.org/10.1016/j.chembiol.2009.04.008
-
Fanutti, C., Gidley, M.J., and Reid, J.S. (1993). Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucanspecific endo-(
$1{\rightarrow}4$ )-beta-D-glucanase). from the cotyledons of germinated nasturtium seeds. Plant J. 3, 691-700. https://doi.org/10.1111/j.1365-313X.1993.00691.x - Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L.S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863-876. https://doi.org/10.1111/j.1365-313X.2004.02171.x
- Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl Acad. Sci. USA 103, 1988-1993. https://doi.org/10.1073/pnas.0505667103
- Grill, E., and Himmelbach, A. (1998). ABA signal transduction. Curr. Opin. Plant Biol. 1, 412-418. https://doi.org/10.1016/S1369-5266(98)80265-3
- Guiltinan, M.J., Marcotte, W.R., Jr., and Quatrano, R.S. (1990). A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250, 267-271. https://doi.org/10.1126/science.2145628
- Hartwig, T., Corvalan, C., Best, N.B., Budka, J.S., Zhu, J.Y., Choe, S., and Schulz, B. (2012). Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PLoS One 7, e36625. https://doi.org/10.1371/journal.pone.0036625
- He, J.X., Gendron, J.M., Sun, Y., Gampala, S.S., Gendron, N., Sun, C.Q., and Wang, Z.Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307, 1634-1638. https://doi.org/10.1126/science.1107580
- Hobo, T., Kowyama, Y., and Hattori, T. (1999). A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc. Natl Acad. Sci. USA 96, 15348-15353. https://doi.org/10.1073/pnas.96.26.15348
- Jensen, M.K., Lindemose, S., de Masi, F., Reimer, J.J., Nielsen, M., Perera, V., Workman, C.T., Turck, F., Grant, M.R., Mundy, J., et al. (2013). ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio. 3, 321-327. https://doi.org/10.1016/j.fob.2013.07.006
- Jin, H., Yan, Z., Nam, K.H., and Li, J. (2007). Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol. Cell 26, 821-830. https://doi.org/10.1016/j.molcel.2007.05.015
- Kang, J.Y., Choi, H.I., Im, M.Y., and Kim, S.Y. (2002). Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343-357. https://doi.org/10.1105/tpc.010362
- Kim, H.B., Kwon, M., Ryu, H., Fujioka, S., Takatsuto, S., Yoshida, S., An, C.S., Lee, I., Hwang, I., and Choe, S. (2006). The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol. 140, 548-557. https://doi.org/10.1104/pp.105.067918
- Kim, T.W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J.X., Sun, Y., Burlingame, A.L., and Wang, Z.Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254-1260. https://doi.org/10.1038/ncb1970
- Kim, S.Y., Kim, B.H., Lim, C.J., Lim, C.O., and Nam, K.H. (2010). Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol. Plant. 138, 191-204. https://doi.org/10.1111/j.1399-3054.2009.01304.x
- Kim, B., Fujioka, S., Kwon, M., Jeon, J., and Choe, S. (2013). Arabidopsis Brassinosteroid-overproducing gulliver3-D/dwarf4-Dmutants exhibit altered responses to Jasmonic acid and pathogen. Plant Cell Rep. 32, 1139-1149. https://doi.org/10.1007/s00299-012-1381-2
- Kim, B., Jeong, Y.J., Corvalan, C., Fujioka, S., Cho, S., Park, T., and Choe, S. (2014). Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis. Plant J. 77, 737-747. https://doi.org/10.1111/tpj.12423
- Kinoshita, T., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., and Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167-171. https://doi.org/10.1038/nature03227
- Klein, P.S., and Melton, D.A. (1996). A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455-8459. https://doi.org/10.1073/pnas.93.16.8455
- Lee, S.C., and Luan, S. (2012). ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell. Environ. 35, 53-60. https://doi.org/10.1111/j.1365-3040.2011.02426.x
- Li, J., and Nam, K.H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295, 1299-1301.
- Li, J., Nam, K.H., Vafeados, D., and Chory, J. (2001). BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol. 127, 14-22. https://doi.org/10.1104/pp.127.1.14
- Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068.
- Maharjan, P.M., and Choe, S. (2011). High temperature stimulates DWARF4 (DWF4). Expression to increase hypocotyl elongation in Arabidopsis. J. Plant Biol. 54, 425-429. https://doi.org/10.1007/s12374-011-9183-6
- Meister, R.J., Williams, L.A., Monfared, M.M., Gallagher, T.L., Kraft, E.A., Nelson, C.G., and Gasser, C.S. (2004). Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. Plant J. 37, 426-438. https://doi.org/10.1046/j.1365-313X.2003.01971.x
- Monfared, M.M., Simon, M.K., Meister, R.J., Roig-Villanova, I., Kooiker, M., Colombo, L., Fletcher, J.C., and Gasser, C.S. (2011). Overlapping and antagonistic activities of BASIC PENTACYSTEINE genes affect a range of developmental processes in Arabidopsis. Plant J. 66, 1020-1031. https://doi.org/10.1111/j.1365-313X.2011.04562.x
- Mundy, J., Yamaguchi-Shinozaki, K., and Chua, N.H. (1990). Nuclear proteins bind conserved elements in the abscisic acidresponsive promoter of a rice rab gene. Plant Cell. Environ. 87, 1406-1410.
- Nemhauser, J.L., Hong, F., and Chory, J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467-475. https://doi.org/10.1016/j.cell.2006.05.050
- Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., and Tax, F.E. (1999). Brassinosteroidinsensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 121, 743-752. https://doi.org/10.1104/pp.121.3.743
- Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., et al. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA research: an international journal for rapid publication of reports on genes and genomes 10, 239-247. https://doi.org/10.1093/dnares/10.6.239
- Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071.
- Peng, P., Yan, Z., Zhu, Y., and Li, J. (2008). Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Mol. Plant 1, 338-346. https://doi.org/10.1093/mp/ssn001
- Piao, H.L., Lim, J.H., Kim, S.J., Cheong, G.W., and Hwang, I. (2001). Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J. 27, 305-314. https://doi.org/10.1046/j.1365-313x.2001.01099.x
- Rozhon, W., Mayerhofer, J., Petutschnig, E., Fujioka, S., and Jonak, C. (2010). ASKtheta, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway. Plant J. 62, 215-223. https://doi.org/10.1111/j.1365-313X.2010.04145.x
- Russinova, E., Borst, J.W., Kwaaitaal, M., Cano-Delgado, A., Yin, Y., Chory, J., and de Vries, S.C. (2004). Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1).. Plant Cell 16, 3216-3229. https://doi.org/10.1105/tpc.104.025387
- Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18, 1292-1309. https://doi.org/10.1105/tpc.105.035881
- Schmidt, R., Schippers, J.H., Mieulet, D., Obata, T., Fernie, A.R., Guiderdoni, E., and Mueller-Roeber, B. (2013). MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. Plant J. 76, 258-273.
- Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58, 221-227.
- Sing, A., Pannell, D., Karaiskakis, A., Sturgeon, K., Djabali, M., Ellis, J., Lipshitz, H.D., and Cordes, S.P. (2009). A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885-897. https://doi.org/10.1016/j.cell.2009.08.020
- Stambolic, V., Ruel, L., and Woodgett, J.R. (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664-1668. https://doi.org/10.1016/S0960-9822(02)70790-2
- Steber, C.M., and McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiol. 125, 763-769. https://doi.org/10.1104/pp.125.2.763
- Sun, Y., Fan, X.Y., Cao, D.M., Tang, W., He, K., Zhu, J.Y., He, J.X., Bai, M.Y., Zhu, S., Oh, E., et al. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell 19, 765-777. https://doi.org/10.1016/j.devcel.2010.10.010
- Sun, Y., Han, Z., Tang, J., Hu, Z., Chai, C., Zhou, B., and Chai, J. (2013). Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide. Cell Res. 23, 1326-1329. https://doi.org/10.1038/cr.2013.131
- Tang, W., Kim, T.W., Oses-Prieto, J.A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A.L., and Wang, Z.Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557-560. https://doi.org/10.1126/science.1156973
- Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16, 2481-2498. https://doi.org/10.1105/tpc.104.022699
- Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic aciddependent signal transduction pathway under drought and highsalinity conditions. Proc. Natl Acad. Sci. USA 97, 11632-11637. https://doi.org/10.1073/pnas.190309197
- Vriet, C., Russinova, E., and Reuzeau, C. (2013). From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol. Plant 6, 1738-1757. https://doi.org/10.1093/mp/sst096
- Wang, X., and Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313, 1118-1122. https://doi.org/10.1126/science.1127593
- Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D. (2008). Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell 15, 220-235. https://doi.org/10.1016/j.devcel.2008.06.011
- Yamaguchi-Shinozaki, K., Mundy, J., and Chua, N.H. (1990). Four tightly linked rab genes are differentially expressed in rice. Plant Mol. Biol. 14, 29-39. https://doi.org/10.1007/BF00015652
- Yan, Z., Zhao, J., Peng, P., Chihara, R.K., and Li, J. (2009). BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiol. 150, 710-721. https://doi.org/10.1104/pp.109.138099
- Zhang, S., Cai, Z., and Wang, X. (2009). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl Acad. Sci. USA 106, 4543-4548. https://doi.org/10.1073/pnas.0900349106
Cited by
- RD26 mediates crosstalk between drought and brassinosteroid signalling pathways vol.8, 2017, https://doi.org/10.1038/ncomms14573
- Brassinosteroid’s multi-modular interaction with the general stress network customizes stimulus-specific responses in Arabidopsis vol.250, 2016, https://doi.org/10.1016/j.plantsci.2016.06.007
- Barley Brassinosteroid Mutants Provide an Insight into Phytohormonal Homeostasis in Plant Reaction to Drought Stress vol.7, 2016, https://doi.org/10.3389/fpls.2016.01824
- Expression of the Floral Repressor miRNA156 is Positively Regulated by the AGAMOUS-like Proteins AGL15 and AGL18 vol.38, pp.3, 2015, https://doi.org/10.14348/molcells.2015.2311
- Transcriptional networks in leaf senescence vol.27, 2015, https://doi.org/10.1016/j.pbi.2015.06.018
- Litchi Fruit LcNAC1 is a Target of LcMYC2 and Regulator of Fruit Senescence Through its Interaction with LcWRKY1 vol.58, pp.6, 2017, https://doi.org/10.1093/pcp/pcx054
- Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review vol.24, pp.19, 2017, https://doi.org/10.1007/s11356-017-9163-6
- Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-06861-3
- Crosstalk of the Brassinosteroid Signalosome with Phytohormonal and Stress Signaling Components Maintains a Balance between the Processes of Growth and Stress Tolerance vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092675
- Exogenous brassinosteroid application delays senescence and promotes hyponasty in Carica papaya L. leaves vol.30, pp.3, 2018, https://doi.org/10.1007/s40626-018-0114-5
- Overexpression of SoCYP85A1 , a Spinach Cytochrome p450 Gene in Transgenic Tobacco Enhances Root Development and Drought Stress Tolerance vol.8, pp.None, 2017, https://doi.org/10.3389/fpls.2017.01909
- Brassinosteroids: A Promising Option in Deciphering Remedial Strategies for Abiotic Stress Tolerance in Rice vol.8, pp.None, 2014, https://doi.org/10.3389/fpls.2017.02151
- Cross-talk of Brassinosteroid signaling in controlling growth and stress responses vol.474, pp.16, 2014, https://doi.org/10.1042/bcj20160633
- Overexpression of the Wild Soybean R2R3-MYB Transcription Factor GsMYB15 Enhances Resistance to Salt Stress and Helicoverpa Armigera in Transgenic Arabidopsis vol.19, pp.12, 2018, https://doi.org/10.3390/ijms19123958
- Brassinosteroid signaling in plant development and adaptation to stress vol.146, pp.5, 2014, https://doi.org/10.1242/dev.151894
- Enhanced brassinosteroid signaling intensity via SlBRI1 overexpression negatively regulates drought resistance in a manner opposite of that via exogenous BR application in tomato vol.138, pp.None, 2014, https://doi.org/10.1016/j.plaphy.2019.02.014
- 24-Epibrassinolide alters DNA cytosine methylation of Linum usitatissimum L. under salinity stress vol.139, pp.None, 2014, https://doi.org/10.1016/j.plaphy.2019.04.010
- Melatonin Deficiency Confers Tolerance to Multiple Abiotic Stresses in Rice via Decreased Brassinosteroid Levels vol.20, pp.20, 2019, https://doi.org/10.3390/ijms20205173
- Transcription Factors Associated with Leaf Senescence in Crops vol.8, pp.10, 2014, https://doi.org/10.3390/plants8100411
- GSK3‐like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in Arabidopsis vol.100, pp.5, 2014, https://doi.org/10.1111/tpj.14484
- Coping With Water Limitation: Hormones That Modify Plant Root Xylem Development vol.11, pp.None, 2014, https://doi.org/10.3389/fpls.2020.00570
- The physiology of plant responses to drought vol.368, pp.6488, 2014, https://doi.org/10.1126/science.aaz7614
- Different strategies of strigolactone and karrikin signals in regulating the resistance of Arabidopsis thaliana to water-deficit stress vol.15, pp.9, 2014, https://doi.org/10.1080/15592324.2020.1789321
- Suppression of Rice Cryptochrome 1b Decreases Both Melatonin and Expression of Brassinosteroid Biosynthetic Genes Resulting in Salt Tolerance vol.26, pp.4, 2014, https://doi.org/10.3390/molecules26041075
- Versatile Physiological Functions of Plant GSK3-Like Kinases vol.12, pp.5, 2014, https://doi.org/10.3390/genes12050697
- PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis vol.72, pp.12, 2021, https://doi.org/10.1093/jxb/erab158
- Brassinosteroids as a multidimensional regulator of plant physiological and molecular responses under various environmental stresses vol.28, pp.33, 2021, https://doi.org/10.1007/s11356-021-15087-8
- Regulatory short RNAs: A decade's tale for manipulating salt tolerance in plants vol.173, pp.4, 2021, https://doi.org/10.1111/ppl.13492
- Genome-Wide Identification and Characterization of DnaJ Gene Family in Grape (Vitis vinifera L.) vol.7, pp.12, 2014, https://doi.org/10.3390/horticulturae7120589