DOI QR코드

DOI QR Code

Overexpression of Rcan1-1L Inhibits Hypoxia-Induced Cell Apoptosis through Induction of Mitophagy

  • Sun, Lijun (Department of Radiology, Xijing Hospital, The Fourth Military Medical University) ;
  • Hao, Yuewen (Department of Radiology, Xijing Hospital, The Fourth Military Medical University) ;
  • An, Rui (Department of Radiology, Xijing Hospital, The Fourth Military Medical University) ;
  • Li, Haixun (Department of Radiology, Xijing Hospital, The Fourth Military Medical University) ;
  • Xi, Cong (Department of Radiology, Xijing Hospital, The Fourth Military Medical University) ;
  • Shen, Guohong (Department of Radiology, Xijing Hospital, The Fourth Military Medical University)
  • Received : 2014.04.25
  • Accepted : 2014.09.11
  • Published : 2014.11.30

Abstract

Mitophagy, a cellular process that selectively targets dysfunctional mitochondria for degradation, is currently a hot topic in research into the pathogenesis and treatment of many human diseases. Considering that hypoxia causes mitochondrial dysfunction, which results in cell death, we speculated that selective activation of mitophagy might promote cell survival under hypoxic conditions. In the present study, we introduced the Regulator of calcineurin 1-1L (Rcan1-1L) to initiate the mitophagy pathway and aimed to evaluate the effect of Rcan1-1L-induced mitophagy on cell survival under hypoxic conditions. Recombinant adenovirus vectors carrying Rcan1-1L were transfected into human umbilical vein endothelial cells and human adult cardiac myocytes. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and Trypan blue exclusion assay, Rcan1-1L overexpression was found to markedly reverse cell growth inhibition induced by hypoxia. Additionally, Rcan1-1L overexpression inhibited cell apoptosis under hypoxic conditions, as detected by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis assay. Meanwhile, the mitochondria-mediated cell apoptotic pathway was inhibited by Rcan1-1L. In contrast, knockdown of Rcan1-1L accelerated hypoxia-induced cell apoptosis. Moreover, Rcan1-1L overexpression significantly reduced mitochondrial mass, decreased depolarized mitochondria, and downregulated ATP and reactive oxygen species production. We further delineated that the loss of mitochondrial mass was due to the activation of mitophagy induced by Rcan1-1L. Rcan1-1L overexpression activated autophagy flux and promoted translocation of the specific mitophagy receptor Parkin into mitochondria from the cytosol, whereas inhibition of autophagy flux resulted in the accumulation of Parkin-loaded mitochondria. Finally, we demonstrated that mitochondrial 1permeability transition pore opening was significantly increased by Rcan1-1L overexpression, which suggested that Rcan1-1L might evoke mitophagy through regulating mitochondrial permeability transition pores. Taken together, we provide evidence that Rcan1-1L overexpression induces mitophagy, which in turn contributes to cell survival under hypoxic conditions, revealing for the first time that Rcan1-1L-induced mitophagy may be used for cardioprotection.

Keywords

References

  1. Campello, S., Strappazzon, F., and Cecconi, F. (2014). Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim. Biophys. Acta 1837, 451-460. https://doi.org/10.1016/j.bbabio.2013.11.010
  2. Chan, N.C., Salazar, A.M., Pham, A.H., Sweredoski, M.J., Kolawa, N.J., Graham, R.L., Hess, S., and Chan, D.C. (2011). Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726-1737. https://doi.org/10.1093/hmg/ddr048
  3. Chang, K.T., and Min, K.T. (2005). Drosophila melanogaster homolog of Down syndrome critical region 1 is critical for mitochondrial function. Nat. Neurosci. 8, 1577-1585. https://doi.org/10.1038/nn1564
  4. Chatterjee, S., Stewart, A.S., Bish, L.T., Jayasankar, V., Kim, E.M., Pirolli, T., Burdick, J., Woo, Y.J., Gardner, T.J., and Sweeney, H.L. (2002). Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation 106, I212-217.
  5. Cho, D.H., Nakamura, T., and Lipton, S.A. (2010). Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol. Life Sci. 67, 3435-3447. https://doi.org/10.1007/s00018-010-0435-2
  6. Cossarizza, A., Ceccarelli, D., and Masini, A. (1996). Functional heterogeneity of an isolated mitochondrial population revealed by cytofluorometric analysis at the single organelle level. Exp. Cell Res. 222, 84-94. https://doi.org/10.1006/excr.1996.0011
  7. Crawford, D.R., Leahy, K.P., Abramova, N., Lan, L., Wang, Y., and Davies, K.J. (1997). Hamster adapt78 mRNA is a down syndrome critical region homologue that is inducible by oxidative stress. Arch. Biochem. Biophys. 342, 6-12. https://doi.org/10.1006/abbi.1997.0109
  8. Davie,s K.J., Ermak, G., Rothermel, B.A., Pritchard, M., Heitman, J., Ahnn, J., Henrique-Silva, F., Crawford, D., Canaider S., Strippoli P., et al. (2007). Renaming the DSCR1/Adapt78 gene family as RCAN: regulators of calcineurin. FASEB J. 21, 3023-3028. https://doi.org/10.1096/fj.06-7246com
  9. Ding, W.X., and Yin, X.M. (2012). Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol. Chem. 393, 547-564.
  10. Ermak, G., Harris, C.D., and Davies, K.J. (2002). The DSCR1 (Adapt78) isoform 1 protein calcipressin 1 inhibits calcineurin and protects against acute calcium-mediated stress damage, including transient oxidative stress. FASEB J. 16, 814-824. https://doi.org/10.1096/fj.01-0846com
  11. Ermak, G., Harris, C.D., Battocchio, D., and Davies, K.J. (2006). RCAN1 (DSCR1 or Adapt78) stimulates expression of GSK-3beta. FEBS J. 273, 2100-2109. https://doi.org/10.1111/j.1742-4658.2006.05217.x
  12. Ermak, G., Pritchard, M.A., Dronjak, S., Niu, B., and Davies, K.J. (2011). Do RCAN1 proteins link chronic stress with neurodegeneration? FASEB J. 25, 3306-3311. https://doi.org/10.1096/fj.11-185728
  13. Ermak, G., Sojitra, S., Yin, F., Cadenas, E., Cuervo, A.M., and Davies, K.J. (2012). Chronic expression of RCAN1-1L protein induces mitochondrial autophagy and metabolic shift from oxidative phosphorylation to glycolysis in neuronal cells. J. Biol. Chem. 287, 14088-14098. https://doi.org/10.1074/jbc.M111.305342
  14. Fuentes, J.J., Pritchard, M.A., Planas, A.M., Bosch, A., Ferrer, I., and Estivill, X. (1995). A new human gene from the down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Hum. Mol. Genet. 4, 1935-1944. https://doi.org/10.1093/hmg/4.10.1935
  15. Fuentes, J.J., Pritchard, M.A., and Estivill, X. (1997). Genomic organization, alternative splicing, and expression patterns of the DSCR1 (Down syndrome candidate region 1) gene. Genomics 44, 358-361. https://doi.org/10.1006/geno.1997.4866
  16. Goldberg, A.L. (2003). Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899. https://doi.org/10.1038/nature02263
  17. Hoshino A., Matoba, S., Iwai-Kanai, E., Nakamura, H., Kimata, M., Nakaoka, M., Katamura, M., Okawa, Y., Ariyoshi, M., Mita, Y., et al. (2012). p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J. Mol. Cell Cardiol. 52, 175-184. https://doi.org/10.1016/j.yjmcc.2011.10.008
  18. Huang, C., Andres, A.M., Ratliff, E.P., Hernandez, G., Lee, P., and Gottlieb, R.A. (2011). Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 6, e20975. https://doi.org/10.1371/journal.pone.0020975
  19. Jimenez, R.E., Kubli, D.A., and Gustafsson, A.B. (2014). Autophagy and mitophagy in the myocardium: therapeutic potential and concerns. Br. J. Pharmacol. 171, 1907-1916. https://doi.org/10.1111/bph.12477
  20. Kim, S.S., Jang, S.A., and Seo, S.R. (2013). CREB-mediated Bcl-2 expression contributes to RCAN1 protection from hydrogen peroxide-induced neuronal death. J. Cell Biochem. 114, 1115-1123. https://doi.org/10.1002/jcb.24452
  21. Klionsky, D.J., Abdalla, F.C., Abeliovich, H., Abraham, R.T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J.A., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544. https://doi.org/10.4161/auto.19496
  22. Koopman, W.J., Willems, P.H., and Smeitink, J.A. (2012). Monogenic mitochondrial disorders. N. Engl. J. Med. 366, 1132-1141. https://doi.org/10.1056/NEJMra1012478
  23. Kubli, D.A., Zhang, X., Lee, Y., Hanna, R.A., Quinsay, M.N., Nguyen, C.K., Jimenez, R., Petrosyan, S., Murphy, A.N., and Gustafsson, A.B. (2013). Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J. Biol. Chem. 288, 915-926. https://doi.org/10.1074/jbc.M112.411363
  24. Lemasters, J.J. (2005). Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8, 3-5. https://doi.org/10.1089/rej.2005.8.3
  25. Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W., et al. (2012). Mitochondrial outermembrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell. Biol. 14, 177-185. https://doi.org/10.1038/ncb2422
  26. Mandal, S., Guptan, P., Owusu-Ansah, E., and Banerjee, U. (2005). Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev. Cell 9, 843-854. https://doi.org/10.1016/j.devcel.2005.11.006
  27. Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F., et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221. https://doi.org/10.1083/jcb.200910140
  28. Meng, G., Xia, M., Wang, D., Chen, A., Wang, Y., Wang, H., Yu, D., and Wei, J. (2014). Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells. Oncotarget 5, 6365-6374.
  29. Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and Tsujimoto, Y. (2005). Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652-658. https://doi.org/10.1038/nature03317
  30. Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., Omiya, S., Mizote, I., Matsumura, Y., Asahi, M., et al. (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619-624. https://doi.org/10.1038/nm1574
  31. Nakatogawa, H., Suzuki, K., Kamada, Y., and Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458-467. https://doi.org/10.1038/nrm2708
  32. Neubauer, S. (2007). The failing heart--an engine out of fuel. N. Engl. J. Med. 356, 1140-1151. https://doi.org/10.1056/NEJMra063052
  33. Novak, I., Kirkin, V., McEwan, D.G., Zhang, J., Wild, P., Rozenknop, A., Rogov, V., Lohr, F., Popovic, D., Occhipinti, A., et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51. https://doi.org/10.1038/embor.2009.256
  34. Nunnari, J., and Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell 148, 1145-1159. https://doi.org/10.1016/j.cell.2012.02.035
  35. Petronilli, V., Miotto, G., Canton, M., Brini, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999). Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys. J. 76, 725-734. https://doi.org/10.1016/S0006-3495(99)77239-5
  36. Qin, L., Zhao, D., Liu, X., Nagy, J.A., Hoang, M.V., Brown, L.F., Dvorak, H.F., and Zeng, H. (2006). Down syndrome candidate region 1 isoform 1 mediates angiogenesis through the calcineurin-NFAT pathway. Mol. Cancer Res. 4, 811-820. https://doi.org/10.1158/1541-7786.MCR-06-0126
  37. Rodriguez-Enriquez, S., He, L., and Lemasters, J.J. (2004). Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int. J. Biochem. Cell Biol. 36, 2463-2472. https://doi.org/10.1016/j.biocel.2004.04.009
  38. Rodriguez-Enriquez, S., Kai, Y., Maldonado, E., Currin, R.T., and Lemasters, J.J. (2009). Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy 5, 1099-1106. https://doi.org/10.4161/auto.5.8.9825
  39. Scherz-Shouval, R., and Elazar, Z. (2011). Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 36, 30-38. https://doi.org/10.1016/j.tibs.2010.07.007
  40. Serrano-Candelas, E., Farre, D., Aranguren-Ibanez, A., Martinez-Hoyer, S., and Perez-Riba, M. (2014). The vertebrate RCAN gene family: novel insights into evolution, structure and regulation. PLoS One 9, e85539. https://doi.org/10.1371/journal.pone.0085539
  41. Song, Y., Xiao, Y., Wang, J.M., and Chen, Q. (2014). The different molecular mechanisms of mitophagy between yeast and mammals. Crit. Rev. Eukaryot. Gene Expr. 24, 29-38. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2014007569
  42. Sun, X., Wu, Y., Chen, B., Zhang, Z., Zhou, W., Tong, Y., Yuan, J., Xia, K., Gronemeyer, H., Flavell, R.A., et al. (2011). Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J. Biol. Chem. 286, 9049-9062. https://doi.org/10.1074/jbc.M110.177519
  43. Wang, Y., De Keulenaer, G.W., Weinberg, E.O., Muangman, S., Gualberto, A., Landschulz, K.T., Turi, T.G., Thompson, J.F., and Lee, R.T. (2002). Direct biomechanical induction of endogenous calcineurin inhibitor down syndrome critical region-1 in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 283, H533-539. https://doi.org/10.1152/ajpheart.00002.2002
  44. Wu, Y., and Song, W. (2013). Regulation of RCAN1 translation and its role in oxidative stress-induced apoptosis. FASEB J. 27, 208-221. https://doi.org/10.1096/fj.12-213124
  45. Yan, L., Li, Y., Duan, H., Yang, H., Wu, J., Qian, P., Li, B., and Wang, S. (2014). Regulator of calcineurin 1-1L protects cardiomyocytes against hypoxia-induced apoptosis via mitophagy. J. Cardiovasc. Pharmacol. [Epub ahead of print].
  46. Yang, Z., and Klionsky, D.J. (2010). Eaten alive: a history of macroautophagy. Nat. Cell. Biol. 12, 814-822. https://doi.org/10.1038/ncb0910-814
  47. Youle, R.J., and Narendra, D.P. (2011). Mechanisms of mitophagy. Nat. Rev. Mol. Cell. Biol. 12, 9-14.
  48. Zhang, J., and Ney, P.A. (2009). Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16, 939-946. https://doi.org/10.1038/cdd.2009.16
  49. Zhao, P., Xiao, X., Kim, A.S., Leite, M.F., Xu, J., Zhu, X., Ren, J., and Li, J. (2008). c-Jun inhibits thapsigargin-induced ER stress through up-regulation of DSCR1/Adapt78. Exp. Biol. Med. (Maywood) 233, 1289-1300. https://doi.org/10.3181/0803-RM-84

Cited by

  1. The regulator of calcineurin 1 increases adenine nucleotide translocator 1 and leads to mitochondrial dysfunctions vol.140, pp.2, 2017, https://doi.org/10.1111/jnc.13900
  2. Autophagy, Metabolic Disease, and Pathogenesis of Heart Dysfunction vol.33, pp.7, 2017, https://doi.org/10.1016/j.cjca.2017.01.002
  3. Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy vol.6, pp.9, 2015, https://doi.org/10.1038/cddis.2015.230
  4. Down regulation of GALNT3 contributes to endothelial cell injury via activation of p38 MAPK signaling pathway vol.245, 2016, https://doi.org/10.1016/j.atherosclerosis.2015.12.019
  5. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells vol.310, pp.2, 2016, https://doi.org/10.1152/ajprenal.00304.2015
  6. Overexpression of Mitochondrial Ligases Reverses Rotenone-Induced Effects in a Drosophila Model of Parkinson’s Disease vol.13, pp.1662-453X, 2019, https://doi.org/10.3389/fnins.2019.00094
  7. Spatiotemporal expression of RCAN1 and its isoform RCAN1-4 in the mouse hippocampus after pilocarpine-induced status epilepticus vol.24, pp.1, 2014, https://doi.org/10.4196/kjpp.2020.24.1.81
  8. Mitochondrial Quality Control in Cardiomyocytes: A Critical Role in the Progression of Cardiovascular Diseases vol.11, pp.None, 2014, https://doi.org/10.3389/fphys.2020.00252
  9. RCAN1 in cardiovascular diseases: molecular mechanisms and a potential therapeutic target vol.26, pp.1, 2020, https://doi.org/10.1186/s10020-020-00249-0
  10. Down syndrome is an oxidative phosphorylation disorder vol.41, pp.None, 2014, https://doi.org/10.1016/j.redox.2021.101871