DOI QR코드

DOI QR Code

혐기 소화 상징액과 가축 분뇨를 대상으로 한 아질산화 반응조 내 foaming 특성

characteristic of foaming in nitritation reactor using anaerobic digester supernatant and livestock wastewater

  • 임지열 (고려대학교 건축사회환경공학과) ;
  • 길경익 (서울과학기술대학교 건설시스템디자인공학과)
  • Im, Jiyeol (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Gil, Kyungik (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 투고 : 2014.10.07
  • 심사 : 2014.10.10
  • 발행 : 2014.11.30

초록

고농도 질소를 함유하고 있는 하수는 하수처리장 처리 효율에 악영향을 미치는 것으로 알려져 있다. 따라서 고농도 질소를 함유한 하수를 처리하기 위한 다양한 연구가 이루어지고 있다. 본 연구에서는 대표적인 고농도 질소를 함유한 하수인 혐기 소화 상징액과 가축분뇨를 대상으로 유기물 분석, foaming 실험 및 실험실 규모 아질산화 반응조 운전을 실시하였다. 유기물 분석 결과 혐기 소화 상징액은 용존성 불활성한 성분, 가축분뇨는 입자성 생물학적 분해가능한 성분이 가장 큰 부분을 차지하는 것으로 나타났다. 아질산화 반응에 적합한 체류시간은 혐기소화 상징액 2일과 가축분뇨 6일이였으며, 이와 같은 적정 체류시간에 차이는 암모니아성 질소 농도 및 유기물 성상차이에 의한 것으로 보인다. 또한 가축 분뇨 반응조 foam은 혐기 소화 상징액 반응조 foam과 비교하여 발생량은 많지만 빠르게 제거되는 특성을 보였다. 본 연구의 결과는 향후 아질산화 반응의 하수처리장 적용 시 기초 자료로 이용할 수 있을 것으로 보인다.

It has been known that sewage containing high-concentration nitrogen affects the efficiency of municipal wastewater treatment plants harmfully. Therefore, research has been actively conducted to treat sewage containing high-concentration nitrogen. The current study has analyzed organic compounds, conducted foaming tests, and operated a laboratory-level nitritation reactor with the subjects of anaerobic digester supernatant and livestock wastewater which are the typical kinds of sewage containing high-concentration nitrogen. According to the results of analyzing organic compounds, soluble inert components form the largest part of anaerobic digester supernatant while particle biodegradable components occupy the most part of livestock wastewater. About the retention time proper for the reaction of nitritation, anaerobic digester supernatant shows 2 days while livestock wastewater indicates 6 days. It seems that the difference in the proper retention time is resulted from the difference of properties in organic compounds and ammonium nitrogen concentration. In addition, livestock wastewater's reactor foam is generated comparatively more than anaerobic digester supernatant's, but it tends to be eliminated faster. It is expected that the findings of this study can be utilized as foundational data afterwards in applying the reaction of nitritation to municipal wastewater treatment plants.

키워드

참고문헌

  1. APHA, AWWA and WEF (1998). Standard method for examination of water and wastewater. 20th edition, Washington DC, US.
  2. Gaetano, D B and Michele, T (2013) Foaming in membrane bioreactors: Identification of the causes, Journal of Environmental Management., 128, pp. 453-461. https://doi.org/10.1016/j.jenvman.2013.05.036
  3. Gali, A, Dosta, J, Lopez-palau, S and Mata-alvarez, J (2008) SBR technology for high ammonium loading rates. Wat. Sci. & Tech., 58(2), pp. 467-472. https://doi.org/10.2166/wst.2008.408
  4. Gil, K, Choi, E, Yun, Z, Lee, J, Ha, J and Park, J (2002) The nomographic design approach to recycled water treatment by the nitritation process, Wat. Sci. & Tech., 46(11-12), pp. 85-92.
  5. Gil, K and Choi, E (2004) Nitrogen removal by recycle water nitritation as an attractive alternative for retrofit technologies in MWTPs, Wat. Sci. & Tech., 49(5-6), pp. 39-46.
  6. Im, J and Gil, K (2011). Effect of anaerobic digestion on the high rate of nitritation, treating piggery wastewater, Journal of Environmental Sciences, 23(11), pp. 1794-1800. https://doi.org/10.1016/S1001-0742(10)60614-6
  7. Im, J and Gil, K (2013). Changes in the Characteristics of Organic Compounds Depending on the Nitritation Efficiency. Environ Earth Sci, 70, pp. 1297-1305. https://doi.org/10.1007/s12665-013-2216-3
  8. Im, J, Jung, J, Bae, H, Kim, D and Gil K (2014). Correlation between Nitrite Accumulation and Concentration of AOB in a Nitritation reactor. Environ Earth Sci, 72, pp. 289-297. https://doi.org/10.1007/s12665-014-3285-7
  9. Li, H B, Cao, H B, Li, Y P, Zhang, Y and Liu, H R (2010). Effect of Organic Compounds on Nitrite Accumulation during the Nitrification Process for Coking Wastewater. Wat Sci Tech, 62(9), pp. 2096-2105. https://doi.org/10.2166/wst.2010.371
  10. Nakajima, J and Mishima, I (2005) Measurement of foam quality of activated sludge in MBR process. Acta hydrochim. hydrobiol., 33(3), pp. 232-239. https://doi.org/10.1002/aheh.200400575
  11. Kang, M G, Kim, Y, Bang, S H, Lee, J W and Ha, J S (2006) Control of bulking and foaming caused by Microthrix parvicella, Journal of korean society of environmental engineers, 28(4), pp. 376-383. [Korean Literature]
  12. Pitt, P and Jenkins, D (1990). Causes and control of Nocardia in activated sludge. Jounal WPCF., 62, pp. 143-150.
  13. Yang, Q, Liu, X H, Peng, Y Z, Wang, S Y, Sun, H W and Gu, S B (2009). Advanced Nitrogen Removal via Nitrite from Municipal Wastewater in a Pilot-plant Sequencing Batch Reactor. Wat Sci Tech, 59(12), pp. 2371-2377. https://doi.org/10.2166/wst.2009.304
  14. van de Graaf, A A, de Bruijn, P, Robertson, L A, Kuenen, J G and Mulder, A (1991). Biological oxidation of ammonium under anoxic conditions : ANAMMOX process. Intern. Symp. Environ. Biotechnol. 2. pp. 667-669.
  15. van Kempen. R, ten Have, C C R, Meijer. S C F, Mulder. J W and Duin. J O J (2001). SHARON process evaluated for improved wastewater treatment plznt nitrogen effluent quality. Wat Sci Tech, 52(4), pp. 55-62.
  16. van Dongen, U, Jetten, M C M and van Loosdrecht, M C M (2001). The SHARON-ANAMMOX process for the treatment of ammonium rich wastewater. Wat Sci Tech, 44(1), 153-160.
  17. van Loosdrecht, M C M and Jetten, M C M (1998). Microbiological conversions in nitrogen removal. Wat Sci Tech, 38, pp. 1-7.