DOI QR코드

DOI QR Code

Experimental Study on Transient Response According to Variation of Rib Height at Fuel Cell Plate

연료전지용 분리판의 리브 높이 변화에 따른 응답성 변화에 관한 실험적 연구

  • Received : 2013.05.20
  • Accepted : 2013.08.11
  • Published : 2013.11.01

Abstract

In the present study, using a variation of rib height, the transient response and the performance are investigated. The cell voltage is acquired according to the current density change($0.8A/cm^2$ to $1.0A/cm^2$) under same stoichiometry and relative humidity. The different level of undershoots appeared at the different clamping pressure(1.5MPa and 2.0MPa) and different rib height. At 1.5MPa clamping pressure, rib manufactured cut at $100{\mu}m$ height goes to steady state faster than reference plate and has lower maximum undershoot voltage. But performance is lower than reference plate due to increasing contact resistance.

본 연구는 연료전지 공기극에서 리브의 높이를 변화시켰을 때, 이에 따른 응답성과 성능의 변화를 평가하였다. 전류 밀도의 순간적인 변화에 따른 과도 상태의 전압 신호를 분석하기 위해 당량비와 상대습도가 일정한 상태에서 연료전지의 주 작동 전압 구간인 0.5V~0.7V의 범위에서 전류 밀도를 $0.8A/cm^2$에서 $1.0A/cm^2$으로 변화를 주어 응답성을 분석하였고, 체결압력을 1.5MPa, 2.0Mpa로 다르게 했을 경우 언더슈트의 정도를 확인하였다. $100{\mu}m$의 리브 높이를 변화시킨 채널의 경우, 1.5MPa의 체결압에서 기존의 경우에 비해 빠르게 안정적인 상태에 도달했으며 최대 언더슈트 전압값이 낮게 측정되었다. 하지만 성능은 접촉 저항의 증가로 인해 기존의 분리판에 비해 낮은 값을 나타냈다.

Keywords

References

  1. Kim, S.H., Shimpalee, S. and Van Zee, J.W., 2004, "The Effect of Stoichiometry on Dynamic Behavior of a Proton Exchange Membrane Fuel Cell During Load Change," Journal of Power Sources, Vol. 135, pp. 110-121. https://doi.org/10.1016/j.jpowsour.2004.03.060
  2. Shimpalee, S., Lee, W.K., Van Zee, J.W. and Naseri Neshat, H., 2006, "Predicting the Transient Response of a Serpentine Flow-Field PEMFC-1. Excess to Normal Fuel and Air," Journal of Power Sources, Vol. 156, pp. 355-368. https://doi.org/10.1016/j.jpowsour.2005.05.073
  3. Shimpalee, S., Lee, W.K., Van Zee, J.W. and Naseri Neshat, H., 2006, "Predicting the Transient Response of a Serpentine Flow-Field PEMFC- 2. Normal to Minimal Fuel and Air," Journal of Power Sources, Vol. 156, pp. 369-374. https://doi.org/10.1016/j.jpowsour.2005.05.074
  4. Qu, S., Li, X, Hou, M., Shao, Z. and Yi, B., 2008, "The Effect of Air Stoichiometry Change on the Dynamic Behavior of a Proton Exchange Membrane Fuel Cell," Journal of Power Sources, Vol. 185, pp. 302-310. https://doi.org/10.1016/j.jpowsour.2008.06.080
  5. Qu, S., Li, X, Ke, C., Shao, Z. and Yi, B., 2010, "Experimental and Modeling Study on Water Dynamic Transprot of the Proton Exchange Membrane Fuel Cell Under Transient Air Flow and Load Change," Journal of Power Sources, Vol. 195, pp. 6623-6636.
  6. Methekar, R.N., Prasad, V. and Gudi, R., 2007, "Dynamic Analysis and Linear Contral Strategies for Proton Exchange Membrane Fuel Cell Using a Distributed Parameter Model," Journal of Power Sources, Vol. 165, pp. 152-170. https://doi.org/10.1016/j.jpowsour.2006.11.047
  7. Nitta, I., Hottinen, T. and Mikkola, M., 2007, "Inhomogeneous Compression of PEMFC Gas Diffusion Layer Part I. Experimental," Journal of Power Sources, Vol. 171, pp. 26-36. https://doi.org/10.1016/j.jpowsour.2006.11.018
  8. Nitta, I., Karvonen, S., Hottinen, O. and Mikkola, M., 2008, Modelling the Effect of Inhomogeneous Compression of GDL on Local Transport Phenomena in a PEM Fuel Cell, Feul Cells, Vol. 8, pp. 410-421. https://doi.org/10.1002/fuce.200700058
  9. Chi, P.H., Chan, S.H., Weng, F.B., Su, A., Sui, P.C. and Djilali, N., 2010, "On the Effects of Non-Uniform Property Distribution Due to Compression in the Gas Diffusion Layer of a PEMFC," International Journal of Hydrogen Energy, Vol. 35, pp. 2936-2948. https://doi.org/10.1016/j.ijhydene.2009.05.066
  10. Han, K., Hong, B.K., Kim, S.H., Ahn, B.K. and Lim, T.W., 2010, "Influence of Anisotropic Bending Stiffness of Gas Diffusion Layers on the Electrochemical Performances of Polymer Electrolyte Membrane Fuel Cells," International Journal of Hydrogen Energy, Vol. 35, pp. 12317-12328. https://doi.org/10.1016/j.ijhydene.2010.08.061
  11. Saha, L.K., Tabe, Y. and Oshima, N., 2012, "Effect of GDL Deformation on the Pressure Drop of Polymer Electrolyte Fuel Cell Separator Channel," Journal of Power Sources, Vol. 202, pp. 100-107. https://doi.org/10.1016/j.jpowsour.2011.11.038
  12. Wilde, P.M., Mandle, M, Murata, M. and Berg, N., 2004, "Structural and Physical Properties of GDL and GDL/BPP Combination and Their Onfluence on PEMFC Performance," Feul Cells, Vol. 3, pp. 180-184.
  13. Chang, W.R., Hwang, J.J., Weng, F.B. and Chan, S.H., 2007, "Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers," Journal of Power Sources, Vol. 163, pp. 784-792. https://doi.org/10.1016/j.jpowsour.2006.09.045
  14. Bazylak, A., Sinton, D., Liu, Z.S. and Djilali, N., 2007, "The Effect of Air Stoichiometry Change on the Dynamic Behavior of a Proton Exchange Membrane Fuel Cell," Journal of Power Sources, Vol. 185, pp. 302-310.
  15. Ceraolo, M., Miulli, C. and Pozio, A., 2002, "Modeling Static and Dynamic Behavior of Proton Exchange Membrane Fuel Cells on the Basis of Electro-Chemical Description," Journal of Power Sources, Vol. 113, pp. 131-144.