DOI QR코드

DOI QR Code

복합재 추진기관의 확률적 구조 설계 기법

A Probabilistic Structural Design Method of Composite Propulsion System

  • Hwang, Tae-Kyung (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Kim, Hyung-Kun (Advanced Propulsion Technology Center, Agency for Defense Development) ;
  • Kim, Seong-Eun (Advanced Propulsion Technology Center, Agency for Defense Development)
  • 투고 : 2012.12.01
  • 심사 : 2013.08.08
  • 발행 : 2013.10.01

초록

본 논문은 평균값과 Allowable 값 기준의 구조 안전율과 구조 신뢰도와 관계 비교를 통해 복합재 추진기관의 확률적 구조 설계 방법을 설명하였다. 일반적으로 복합재 압력용기의 평균 값 기준의 구조설계는 1.5 이상의 구조 안전율과 0.999 이상의 구조 신뢰도 값이 요구된다. 요구 압력 기준의 0.999의 구조 신뢰도를 만족하기 위해서 평균 값 기준의 구조설계는 섬유 강도의 변동률에 따라 다른 구조 안전율을 부여해야한다. 그러나 이미 섬유 강도 변동률이 고려된 Allowable 값을 이용할 때는 고정된 안전율이 부여된다. 이상의 해석 결과로 볼 때 섬유 강도는 복합재 압력용기 구조 설계에 가장 중요한 설계 변수이고, 우수한 성능의 복합재 추진기관을 개발하기 위해서는 섬유 강도의 변동률이 최소화되어야 함을 알 수 있었다.

This paper describes a probabilistic structural design method of composite propulsion system by comparing safety factor based on average value and allowable value with structural reliability. Generally, the required structural safety factor and reliability of composite pressure vessel are 1.5 and 0.999, respectively. In the case of structural design using average strength, the safety factor which satisfies the required structural reliability depends on the variation of fiber strength. However, the structural design using allowable value shows constant safety factor for the variation of fiber strength, because the allowable value of fiber strength is calculated by considering the variation of fiber strength. Through the analysis results, it was known that the fiber strength is the most important design random variable for the structural design of composite pressure vessel and the variation of fiber strength must be minimized to develop the high performance composite propulsion system.

키워드

참고문헌

  1. Hwang, T.K., Doh, Y.D., and Kim, H.G., "Size Effect on Tensile Strength of Filament Wound CFRP Composites," Journal of the korea Society for Composite Materials, Vol. 24, No. 5, pp. 1-8, 2011.
  2. Standard General Requirements for Safe Design and operation of Pressure Missile and Space Systems, MIL-STD 1522A, 1995.
  3. Space systems Composite Overwrapped Pressure vessels, ANSI/AIAA S-081, 2000.
  4. James L.E., Alen G.A., and Kent, C., "Applying Design to Reliability Techniques to a Composite Solid Rocket Motor Case," AIAA-91-1033-CP.
  5. Chamis, C.C., Probabilistic Design of Composite Structures, NASA/TM-2006-214660, 2006.
  6. Donald, M.N. and Vangel, M.G., "Statistically Based Material Properties- a Military Handbook-17 Perspective," AD-A219195, 1990.
  7. Cederbram, G., Elishakoff, I. and Librescu, L., "Reliability of Laminated Plates via the First-Order Second Moment Method," Composite Structures, Vol. 15, pp. 161-167, 1990. https://doi.org/10.1016/0263-8223(90)90005-Y
  8. Miki, M. and Murotsu, Y., "Reliability of Unidirectional Fibrous Composites," AIAA journal, Vol. 28(11), pp. 1980-1986, 1990. https://doi.org/10.2514/3.10508
  9. Sciuva, M.D. and Lomario, D., "A Comparison between Monte Carlo and FORMs in Calculating the Reliability of a Composite Structure," Composite Structures, Vol. 59, pp. 155-162, 2003. https://doi.org/10.1016/S0263-8223(02)00170-8
  10. Wetherhold, R.C., "Reliability Calculation for Strength of Fibrous Composite under Multi-Axial Loading," Journal of composite materials, Vol. 15, pp. 240-248, 1981. https://doi.org/10.1177/002199838101500304
  11. Jeong, H.K. and Shenoi, R.A., "Probabilistic Strength Analysis of Rectangular FRP Plates Using Monte Carlo Simulation," Computers& structures, Vol. 76, pp. 219-235, 2000. https://doi.org/10.1016/S0045-7949(99)00171-6
  12. Hwang, T.K., Hong, C.S. and Kim, C.G., "Probabilistic Deformation and Strength Prediction for a Filament Wound Pressure Vessel," Composite Part B, Vol. 34, pp. 481-497, 2003. https://doi.org/10.1016/S1359-8368(03)00021-0
  13. Hwang, T.K., Park, J.B., and Kim, H.G., "Evaluation of Fiber Material Properties in Filament Wound Composite Pressure Vessels," Composite Part A, Vol. 43, pp. 1467-1475, 2012. https://doi.org/10.1016/j.compositesa.2012.04.005