DOI QR코드

DOI QR Code

Ethanol Production by Repeated Batch and Continuous Fermentations by Saccharomyces cerevisiae Immobilized in a Fibrous Bed Bioreactor

  • Chen, Yong (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Liu, Qingguo (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Zhou, Tao (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Li, Bingbing (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Yao, Shiwei (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Li, An (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Wu, Jinglan (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Ying, Hanjie (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
  • Received : 2012.09.25
  • Accepted : 2012.12.26
  • Published : 2013.04.28

Abstract

In this work, a fibrous bed bioreactor with high specific surface area and good adsorption efficacy for S. cerevisiae cells was used as the immobilization matrix in the production of ethanol. In batch fermentation, an optimal ethanol concentration of 91.36 g/l and productivity of 4.57 g $l^{-1}\;h^{-1}$ were obtained at an initial sugar concentration of 200 g/l. The ethanol productivity achieved by the immobilized cells was 41.93% higher than that obtained from free cells. Ethanol production in a 22-cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in packed-bed reactors, a maximum ethanol concentration of 108.14 g/l and a productivity of 14.71 g $l^{-1}\;h^{-1}$ were attained at $35^{\circ}C$, and a dilution rate of 0.136 $h^{-1}$ with 250 g/l glucose.

Keywords

References

  1. Adinarayana, K., B. Jyothi, and P. Ellaiah. 2005. Production of alkaline protease with immobilized cells of Bacillus subtilis PE- 11 in various matrices by entrapment technique. AAPS Pharm. Sci. Tech. 6: 391-397. https://doi.org/10.1208/pt060348
  2. Amenaghawon, N. A., C. O. Okieimen, and S. E. Ogbeide. 2012. Kinetic modelling of ethanol inhibition during alcohol fermentation of corn stover using Saccharomyces cerevisiae. Int. J. Eng. Res. Appl. 4: 798-803.
  3. Amutha, R. and P. Gunasekaran. 2001. Production of ethanol from liquefied cassava using co-immobilized cells of Zymomonas mobilis and Saccharomyces diastaticus. J. Biosci. Bioeng. 92: 560-564. https://doi.org/10.1016/S1389-1723(01)80316-9
  4. Ariyajaroenwong, P., P. Laopaiboon, P. Jaisil, and L. Laopaiboon. 2012. Repeated-batch ethanol production from sweet sorghum juice by Saccharomyces cerevisiae immobilized on sweet sorghum stalks. Energies 5: 1215-1228. https://doi.org/10.3390/en5041215
  5. Bai, F. W., L. J. Chen, Z. Zhang, W. A. Anderson, and M. Moo-Young. 2004. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J. Biotechnol. 110: 287-293. https://doi.org/10.1016/j.jbiotec.2004.01.017
  6. Bai, F. W., W. A. Anderson, and M. Moo-Young. 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26: 89-105. https://doi.org/10.1016/j.biotechadv.2007.09.002
  7. Chandel, A. K., M. L. Narasu, G. Chandrasekhar, A. Manikyam, and L. V. Rao. 2009. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour. Technol. 100: 2404-2410. https://doi.org/10.1016/j.biortech.2008.11.014
  8. Chen, J., H. Chen, X. Zhu, Y. Lu, S. T. Yang, Z. Xu, and P. Cen. 2009. Long-term production of soluble human Fas ligand through immobilization of Dictyosteliu discoideum in a fibrous bed bioreactor. Appl. Microbiol. Biotechnol. 82: 241-248. https://doi.org/10.1007/s00253-008-1769-7
  9. Demirci, A., A. L. Pometto, and K. L. G. Ho. 1997. Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J. Ind. Microbiol. Biotechnol. 19: 299-304. https://doi.org/10.1038/sj.jim.2900464
  10. Diderich, J. A., M. Schepper, P. van Hoek, M. A. H. Luttik, J. P van Dijken, J. T. Pronk, et al. 1999. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 274: 15350-15359. https://doi.org/10.1074/jbc.274.22.15350
  11. Hamelinck, C. N., G.. V. Hooijdonk, and A. P. C. Faaij. 2005. Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle-, and long-term. Biomass Bioenerg. 28: 384-410. https://doi.org/10.1016/j.biombioe.2004.09.002
  12. Huang, W. C., D. E. Ramey, and S. T. Yang. 2004. Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous-bed bioreactor. Appl. Biochem. Biotechnol. 115: 113-116.
  13. Kannan, T. R., G.. Sangiliyandi, and P. Gunasekaran. 1998. Improved ethanol production from sucrose by a mutant of Zymomonas mobilis lacking sucrases in immobilized cell fermentation. Enzyme Microb. Technol. 22: 179-184. https://doi.org/10.1016/S0141-0229(97)00158-0
  14. Kar, S., M. R. Swain, and R. C. Ray. 2008. Statistical optimization of alpha-amylase production with immobilized cells of Streptomyces erumpens MTCC 7317 in Luffa cylindrica L. sponge discs. Appl. Biochem. Biotechnol. 152: 177-188.
  15. Kilonzo, P., A. Margaritis, and M. A. Bergougnou. 2009. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. J. Biotechnol. 143: 60-68. https://doi.org/10.1016/j.jbiotec.2009.06.007
  16. Kilonzo, P., A. Margaritis, and M. A. Bergougnou. 2010. Repeated-batch production of glucoamylase using recombinant Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor. J. Ind. Microbiol. Biotechnol. 37: 773-783. https://doi.org/10.1007/s10295-010-0719-4
  17. Krisch, J. and B. Szajani. 1997. Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti. Biotechnol. Lett. 19: 525-528. https://doi.org/10.1023/A:1018329118396
  18. Laopaiboon, L. and P. Laopaiboon. 2012. Ethanol production from sweet sorghum juice in repeated-batch fermentation by Saccharomyces cerevisiae immobilized on corncob. World J. Microbiol. Biotechnol. 28: 559-566. https://doi.org/10.1007/s11274-011-0848-6
  19. Laopaiboon, L., S. Nuanpeng, P. Srinophakun, P. Klanrit, and P. Laopaiboon. 2009. Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresour. Technol. 100: 4176-4182. https://doi.org/10.1016/j.biortech.2009.03.046
  20. Najafpour, G. D. 2006. Immobilization of microbial cells for the production of organic acid and ethanol. Biochem. Eng. Biotechnol. 8: 199-227.
  21. Nigam, J. N. 2000. Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. J. Biotechnol. 80: 189-193. https://doi.org/10.1016/S0168-1656(00)00246-7
  22. Pacheco, A. M., D. R. Gondim, and L. R. B. Goncalves. 2010. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Appl. Biochem. Biotechnol. 161: 209-217. https://doi.org/10.1007/s12010-009-8781-y
  23. Qureshi, N., B. A. Annous, T. C. Ezeji, P. Karcher, and I. S. Maddox. 2005. Biofilm reactors for industrial bioconversion processes: Employing potential of enhanced reaction rates. Microb. Cell Fact. 4: 24. https://doi.org/10.1186/1475-2859-4-24
  24. Rattanapan, A., S. Limtong, and M. Phisalaphong. 2011. Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons. Appl. Energy 88: 4400-4404. https://doi.org/10.1016/j.apenergy.2011.05.020
  25. Rittmann, S., A. Seifert, and C. Herwig. 2012. Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on $ H_2 $ and $ CO_2 $. Biomass Bioenerg. 36: 293-301. https://doi.org/10.1016/j.biombioe.2011.10.038
  26. Ryu, D. D. Y., Y. J. Kim, and J. H. Kim. 1984. Effect of air supplement on the performance of continuous ethanol fermentation system. Biotechnol. Bioeng. 26: 12-16. https://doi.org/10.1002/bit.260260104
  27. Swain, M. R., S. Kar, A. K. Sahoo, and R. C. Ray. 2007. Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae. Microbiol. Res. 162: 93-98. https://doi.org/10.1016/j.micres.2006.01.009
  28. Tay, A. and S. T. Yang. 2002. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol. Bioeng. 80: 1-12. https://doi.org/10.1002/bit.10340
  29. Thomas, K. C. and W. M. Ingledew. 1990. Fuel alcohol production: Effects of free amino nitrogen on fermentation of very-high-gravity wheat mash. Appl. Environ. Microbiol. 56: 2046-2050.
  30. Thomas, K. C., S. H. Hynes, and W. M. Ingledew. 1996. Practical and theoretical considerations in the production of high concentration of alcohol by fermentation. Process Biochem. 31: 321-331. https://doi.org/10.1016/0032-9592(95)00073-9
  31. Watanabe, I., N. Miyata, A. Ando, R. Shiroma, K. Tokuyasu, and T. Nakamura. 2012. Ethanol production by repeated-batch simultaneous saccharication and fermentation (SSF) of alkalitreated rice straw using immobilized Saccharomyces cerevisiae cells. Bioresour. Technol. 123: 695-698. https://doi.org/10.1016/j.biortech.2012.07.052
  32. Xu, Z. N. and S. T. Yang. 2007. Production of mycophenolic acid by Penicillium brevicompactum immobilized in a rotating fibrous-bed bioreactor. Enzyme Microb. 40: 623-628. https://doi.org/10.1016/j.enzmictec.2006.05.025
  33. Yu, J. L., X. Zhang, and T. W. Tan. 2007. A novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 129: 415-420. https://doi.org/10.1016/j.jbiotec.2007.01.039
  34. Zhu, Y. and S. T. Yang. 2003. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor. Biotechnol. Prog. 19: 365-372. https://doi.org/10.1021/bp025647x

Cited by

  1. Anaerobic ammonium oxidation (ANAMMOX) sludge immobilized by waterborne polyurethane and its nitrogen removal performance-a lab scale study vol.5, pp.32, 2013, https://doi.org/10.1039/c4ra14451a
  2. Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.00139
  3. Immobilization of cells and enzymes to LentiKats® vol.100, pp.6, 2013, https://doi.org/10.1007/s00253-016-7283-4
  4. Development of corn silk as a biocarrier for <i>Zymomonas mobilis</i> biofilms in ethanol production from rice straw vol.62, pp.2, 2013, https://doi.org/10.2323/jgam.62.68
  5. Hemicellulosic Ethanol Production in Fluidized Bed Reactor from Sugar Cane Bagasse Hydrolysate: Interplay among Carrier Concentration and Aeration Rate vol.5, pp.9, 2013, https://doi.org/10.1021/acssuschemeng.7b01916
  6. FLO Genes Family and Transcription Factor MIG1 Regulate Saccharomyces cerevisiae Biofilm Formation During Immobilized Fermentation vol.9, pp.None, 2013, https://doi.org/10.3389/fmicb.2018.01860
  7. Nitric oxide increases biofilm formation in Saccharomyces cerevisiae by activating the transcriptional factor Mac1p and thereby regulating the transmembrane protein Ctr1 vol.12, pp.None, 2019, https://doi.org/10.1186/s13068-019-1359-1
  8. Encapsulation enhances protoplast fusant stability vol.117, pp.6, 2013, https://doi.org/10.1002/bit.27318
  9. Feasibility Study on Long-Term Continuous Ethanol Production from Cassava Supernatant by Immobilized Yeast Cells in Packed Bed Reactor vol.30, pp.8, 2020, https://doi.org/10.4014/jmb.1908.08017
  10. Biofilm-based fermentation: a novel immobilisation strategy for Saccharomyces cerevisiae cell cycle progression during ethanol production vol.104, pp.17, 2020, https://doi.org/10.1007/s00253-020-10770-1
  11. Repeated batches as a strategy for high 2G ethanol production from undetoxified hemicellulose hydrolysate using immobilized cells of recombinant Saccharomyces cerevisiae in a fixed-bed reactor vol.13, pp.None, 2013, https://doi.org/10.1186/s13068-020-01722-y
  12. Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol vol.65, pp.None, 2013, https://doi.org/10.1016/j.ymben.2021.03.008
  13. Exploring the relationship between the signal molecule AI-2 and the biofilm formation of Lactobacillus sanfranciscensis vol.154, pp.None, 2013, https://doi.org/10.1016/j.lwt.2021.112704