• Title/Summary/Keyword: fibrous bed bioreactor

Search Result 2, Processing Time 0.016 seconds

Ethanol Production by Repeated Batch and Continuous Fermentations by Saccharomyces cerevisiae Immobilized in a Fibrous Bed Bioreactor

  • Chen, Yong;Liu, Qingguo;Zhou, Tao;Li, Bingbing;Yao, Shiwei;Li, An;Wu, Jinglan;Ying, Hanjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.511-517
    • /
    • 2013
  • In this work, a fibrous bed bioreactor with high specific surface area and good adsorption efficacy for S. cerevisiae cells was used as the immobilization matrix in the production of ethanol. In batch fermentation, an optimal ethanol concentration of 91.36 g/l and productivity of 4.57 g $l^{-1}\;h^{-1}$ were obtained at an initial sugar concentration of 200 g/l. The ethanol productivity achieved by the immobilized cells was 41.93% higher than that obtained from free cells. Ethanol production in a 22-cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in packed-bed reactors, a maximum ethanol concentration of 108.14 g/l and a productivity of 14.71 g $l^{-1}\;h^{-1}$ were attained at $35^{\circ}C$, and a dilution rate of 0.136 $h^{-1}$ with 250 g/l glucose.

$\small{D}$-Lactic Acid Production by Sporolactobacillus inulinus Y2-8 Immobilized in Fibrous Bed Bioreactor Using Corn Flour Hydrolyzate

  • Zhao, Ting;Liu, Dong;Ren, Hengfei;Shi, Xinchi;Zhao, Nan;Chen, Yong;Ying, Hanjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1664-1672
    • /
    • 2014
  • In this study, a fibrous bed bioreactor (FBB) was used for $\small{D}$-lactic acid ($\small{D}$-LA) production by Sporolactobacillus inulinus Y2-8. Corn flour hydrolyzed with ${\alpha}$-amylase and saccharifying enzyme was used as a cost-efficient and nutrient-rich substrate for $\small{D}$-LA production. A maximal starch conversion rate of 93.78% was obtained. The optimum pH for $\small{D}$-LA production was determined to be 6.5. Ammonia water was determined to be an ideal neutralizing agent, which improved the $\small{D}$-LA production and purification processes. Batch fermentation and fed-batch fermentation, with both free cells and immobilized cells, were compared to highlight the advantages of FBB fermentation. In batch mode, the $\small{D}$-LA production rate of FBB fermentation was 1.62 g/l/h, which was 37.29% higher than that of free-cell fermentation, and the $\small{D}$-LA optical purities of the two fermentation methods were above 99.00%. In fe$\small{D}$-batch mode, the maximum $\small{D}$-LA concentration attained by FBB fermentation was 218.8 g/l, which was 37.67% higher than that of free-cell fermentation. Repeate$\small{D}$-batch fermentation was performed to determine the long-term performance of the FBB system, and the data indicated that the average $\small{D}$-LA production rate was 1.62 g/l/h and the average yield was 0.98 g/g. Thus, hydrolyzed corn flour fermented by S. inulinus Y2-8 in a FBB may be used for improving $\small{D}$-LA fermentation by using ammonia water as the neutralizing agent.