DOI QR코드

DOI QR Code

Effect of Probiotics Lactobacillus and Bifidobacterium on Gut-Derived Lipopolysaccharides and Inflammatory Cytokines: An In Vitro Study Using a Human Colonic Microbiota Model

  • Rodes, Laetitia (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University) ;
  • Khan, Afshan (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University) ;
  • Paul, Arghya (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University) ;
  • Coussa-Charley, Michael (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University) ;
  • Marinescu, Daniel (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University) ;
  • Tomaro-Duchesneau, Catherine (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University) ;
  • Shao, Wei (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University) ;
  • Kahouli, Imen (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University) ;
  • Prakash, Satya (Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University)
  • Received : 2012.05.09
  • Accepted : 2012.12.02
  • Published : 2013.04.28

Abstract

Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-${\alpha}$, IL-$1{\beta}$, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum ($-46.45{\pm}5.65%$), L. rhamnosus ($-30.40{\pm}5.08%$), B. longum ($-42.50{\pm}1.28%$), and B. longum subsp. infantis ($-68.85{\pm}5.32%$) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-${\alpha}$ concentrations ($-69.41{\pm}2.78%$; p < 0.05) and to increase IL-4 concentrations ($+16.50{\pm}0.59%$; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-${\alpha}$ and IL-$1{\beta}$ concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic diseases.

Keywords

References

  1. Alisi, A., M. Manco, R. Devito, F. Piemonte, and V. Nobili. 2010. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. J. Pediatr. Gastroenterol. Nutr. 50: 645-649. https://doi.org/10.1097/MPG.0b013e3181c7bdf1
  2. Bahrami, B., M. W. Child, S. Macfarlane, and G. T. Macfarlane. 2011. Adherence and cytokine induction in Caco-2 cells by bacterial populations from a three-stage continuous-culture model of the large intestine. Appl. Environ. Microbiol. 77: 2934- 2942. https://doi.org/10.1128/AEM.02244-10
  3. Bispo, P. J., G. B. de Melo, A. L. Hofling-Lima, and A. C. Pignatari. 2011. Detection and Gram discrimination of bacterial pathogens from aqueous and vitreous humor using real-time PCR assays. Invest. Ophthalmol. Vis. Sci. 52: 873-881. https://doi.org/10.1167/iovs.10-5712
  4. Borthakur, A., A. N. Anbazhagan, A. Kumar, G. Raheja, V. Singh, K. Ramaswamy, and P. K. Dudeja. 2010. The probiotic Lactobacillus plantarum counteracts TNF-{alpha}-induced downregulation of SMCT1 expression and function. Am. J. Physiol. Gastrointest. Liver Physiol. 299: G928-G934. https://doi.org/10.1152/ajpgi.00279.2010
  5. Cani, P. D., J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761-1772. https://doi.org/10.2337/db06-1491
  6. Cani, P. D., R. Bibiloni, C. Knauf, A. Waget, A. M. Neyrinck, N. M. Delzenne, and R. Burcelin. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57: 1470-1481. https://doi.org/10.2337/db07-1403
  7. Cani, P. D., A. M. Neyrinck, F. Fava, C. Knauf, R. G. Burcelin, K. M. Tuohy, et al. 2007. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50: 2374-2383. https://doi.org/10.1007/s00125-007-0791-0
  8. Cani, P. D., S. Possemiers, T. Van de Wiele, Y. Guiot, A. Everard, O. Rottier, et al. 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58: 1091-1103. https://doi.org/10.1136/gut.2008.165886
  9. Chawla, A., K. D. Nguyen, and Y. P. Goh. 2011. Macrophagemediated inflammation in metabolic disease. Nat. Rev. Immunol. 11: 738-749. https://doi.org/10.1038/nri3071
  10. Chon, H. and B. Choi. 2010. The effects of a vegetable-derived probiotic lactic acid bacterium on the immune response. Microbiol. Immunol. 54: 228-236. https://doi.org/10.1111/j.1348-0421.2010.00202.x
  11. Chon, H., B. Choi, E. Lee, S. Lee, and G. Jeong. 2009. Immunomodulatory effects of specific bacterial components of Lactobacillus plantarum KFCC11389P on the murine macrophage cell line RAW 264.7. J. Appl. Microbiol. 107: 1588-1597. https://doi.org/10.1111/j.1365-2672.2009.04343.x
  12. Coombes, J. L. and F. Powrie. 2008. Dendritic cells in intestinal immune regulation. Nat. Rev. Immunol. 8: 435-446. https://doi.org/10.1038/nri2335
  13. De, P. G., J. Cinova, R. Stepankova, L. Tuckova, and Y. Sanz. 2009. Pivotal advance: Bifidobacteria and Gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J. Leukoc. Biol. 87: 765-778.
  14. Ewaschuk, J. B., H. Diaz, L. Meddings, B. Diederichs, A. Dmytrash, J. Backer, et al. 2008. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 295: G1025-G1034. https://doi.org/10.1152/ajpgi.90227.2008
  15. Forsyth, C. B., A. Farhadi, S. M. Jakate, Y. Tang, M. Shaikh, and A. Keshavarzian. 2009. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43: 163-172. https://doi.org/10.1016/j.alcohol.2008.12.009
  16. Gordon, S. 2007. The macrophage: Past, present and future. Eur. J. Immunol. 37 (Suppl 1): S9-S17. https://doi.org/10.1002/eji.200737638
  17. Goris, H., S. Daenen, M. R. Halie, and D. van der Waaij. 1986. Effect of intestinal flora modulation by oral polymyxin treatment on hemopoietic stem cell kinetics in mice. Acta Haematol. 76: 44-49. https://doi.org/10.1159/000206017
  18. Goris, H., F. de Boer, and D. van der Waaij. 1985. Myelopoiesis in experimentally contaminated specific-pathogen-free and germfree mice during oral administration of polymyxin. Infect. Immun. 50: 437-441.
  19. Gosselink, M. P., W. R. Schouten, L. M. van Lieshout, W. C. Hop, J. D. Laman, and J. G. Ruseler-Van Embden. 2004. Delay of the first onset of pouchitis by oral intake of the probiotic strain Lactobacillus rhamnosus GG. Dis. Colon Rectum 47: 876-884. https://doi.org/10.1007/s10350-004-0525-z
  20. Grimm, M. C., W. E. Pullman, G. M. Bennett, P. J. Sullivan, P. Pavli, and W. F. Doe. 1995. Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J. Gastroenterol. Hepatol. 10: 387-395. https://doi.org/10.1111/j.1440-1746.1995.tb01589.x
  21. Kamada, N., T. Hisamatsu, S. Okamoto, H. Chinen, T. Kobayashi, T. Sato, et al. 2008. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFNgamma axis. J. Clin. Invest. 118: 2269-2280.
  22. Karimi, K., M. D. Inman, J. Bienenstock, and P. Forsythe. 2009. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am. J. Respir. Crit. Care Med. 179: 186-193. https://doi.org/10.1164/rccm.200806-951OC
  23. Kawai, T. and S. Akira. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637-650. https://doi.org/10.1016/j.immuni.2011.05.006
  24. Kim, D. W., S. B. Cho, H. J. Lee, W. T. Chung, K. H. Kim, J. Hwangbo, et al. 2007. Comparison of cytokine and nitric oxide induction in murine macrophages between whole cell and enzymatically digested Bifidobacterium sp. obtained from monogastric animals. J. Microbiol. 45: 305-310.
  25. Larsen, N., F. K. Vogensen, F. W. van den Berg, D. S. Nielsen, A. S. Andreasen, B. K. Pedersen, et al. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5: e9085. https://doi.org/10.1371/journal.pone.0009085
  26. Leeson, M. C., Y. Fujihara, and D. C. Morrison. 1994. Evidence for lipopolysaccharide as the predominant proinflammatory mediator in supernatants of antibiotic-treated bacteria. Infect. Immun. 62: 4975-4980.
  27. Lopez, P., M. Gueimonde, A. Margolles, and A. Suarez. 2010. Distinct Bifidobacterium strains drive different immune responses in vitro. Int. J. Food Microbiol. 138: 157-165. https://doi.org/10.1016/j.ijfoodmicro.2009.12.023
  28. Lu, Y. C., W. C. Yeh, and P. S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42: 145-151. https://doi.org/10.1016/j.cyto.2008.01.006
  29. Ma, D., P. Forsythe, and J. Bienenstock. 2004. Live Lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect. Immun. 72: 5308-5314. https://doi.org/10.1128/IAI.72.9.5308-5314.2004
  30. Madsen, K. L., J. S. Doyle, L. D. Jewell, M. M. Tavernini, and R. N. Fedorak. 1999. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116: 1107- 1114. https://doi.org/10.1016/S0016-5085(99)70013-2
  31. Maitra, U., H. Deng, T. Glaros, B. Baker, D. G. Capelluto, Z. Li, and L. Li. 2012. Molecular mechanisms responsible for the selective and low-grade induction of proinflammatory mediators in murine macrophages by lipopolysaccharide. J. Immunol. 189: 1014-1023. https://doi.org/10.4049/jimmunol.1200857
  32. Mao, Y., S. Nobaek, B. Kasravi, D. Adawi, U. Stenram, G. Molin, and B. Jeppsson. 1996. The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 111: 334-344. https://doi.org/10.1053/gast.1996.v111.pm8690198
  33. Mehta, N. N., F. C. McGillicuddy, P. D. Anderson, C. C. Hinkle, R. Shah, L. Pruscino, et al. 2010. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 59: 172-181. https://doi.org/10.2337/db09-0367
  34. Mutlu, E., A. Keshavarzian, P. Engen, C. B. Forsyth, M. Sikaroodi, and P. Gillevet. 2009. Intestinal dysbiosis: A possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin. Exp. Res. 33: 1836-1846. https://doi.org/10.1111/j.1530-0277.2009.01022.x
  35. O'Mahony, C., P. Scully, D. O'Mahony, S. Murphy, F. O'Brien, A. Lyons, et al. 2008. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation. PLoS Pathog. 4: e1000112. https://doi.org/10.1371/journal.ppat.1000112
  36. Pena, J. A., A. B. Rogers, Z. Ge, V. Ng, S. Y. Li, J. G. Fox, and J. Versalovic. 2005. Probiotic Lactobacillus spp. diminish Helicobacter hepaticus-induced inflammatory bowel disease in interleukin-10-deficient mice. Infect. Immun. 73: 912-920. https://doi.org/10.1128/IAI.73.2.912-920.2005
  37. Prakash, S., L. Rodes, M. Coussa-Charley, and C. Tomaro- Duchesneau. 2011. Gut microbiota: Next frontier in understanding human health and development of biotherapeutics. Biologics 5: 71-86.
  38. Rodes, L., A. Paul, M. Coussa-Charley, H. Al-Salami, C. Tomaro-Duchesneau, M. Fakhoury, and S. Prakash. 2011. Transit time affects the community stability of Lactobacillus and Bifidobacterium species in an in vitro model of human colonic microbiotia. Artif. Cells Blood Substit. Immobil. Biotechnol. 39: 351-356. https://doi.org/10.3109/10731199.2011.622280
  39. Roselli, M., A. Finamore, M. S. Britti, and E. Mengheri. 2006. Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88. Br. J. Nutr. 95: 1177-1184. https://doi.org/10.1079/BJN20051681
  40. Schiffrin, E. J., A. Parlesak, C. Bode, J. C. Bode, M. A. van't Hof, D. Grathwohl, and Y. Guigoz. 2009. Probiotic yogurt in the elderly with intestinal bacterial overgrowth: Endotoxaemia and innate immune functions. Br. J. Nutr. 101: 961-966. https://doi.org/10.1017/S0007114508055591
  41. Schultz, M., C. Veltkamp, L. A. Dieleman, W. B. Grenther, P. B. Wyrick, S. L. Tonkonogy, and R. B. Sartor. 2002. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm. Bowel Dis. 8: 71-80.
  42. Smith, P. D., L. E. Smythies, M. Mosteller-Barnum, D. A. Sibley, M. W. Russell, M. Merger, et al. 2001. Intestinal macrophages lack CD14 and CD89 and consequently are downregulated for LPS- and IgA-mediated activities. J. Immunol. 167: 2651-2656.
  43. Smith, P. D., L. E. Smythies, R. Shen, T. Greenwell-Wild, M. Gliozzi, and S. M. Wahl. 2011. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol. 4: 31-42. https://doi.org/10.1038/mi.2010.66
  44. Smythies, L. E., M. Sellers, R. H. Clements, M. Mosteller- Barnum, G. Meng, W. H. Benjamin, et al. 2005. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115: 66-75. https://doi.org/10.1172/JCI200519229
  45. Stagg, A. J., A. L. Hart, S. C. Knight, and M. A. Kamm. 2003. The dendritic cell: Its role in intestinal inflammation and relationship with gut bacteria. Gut 52: 1522-1529. https://doi.org/10.1136/gut.52.10.1522
  46. Turnbaugh, P. J., M. Hamady, T. Yatsunenko, B. L. Cantarel, A. Duncan, R. E. Ley, et al. 2009. A core gut microbiome in obese and lean twins. Nature 457: 480-484. https://doi.org/10.1038/nature07540
  47. Veiga, P., C. A. Gallini, C. Beal, M. Michaud, M. L. Delaney, A. DuBois, et al. 2010. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl. Acad. Sci. USA 107: 18132-18137. https://doi.org/10.1073/pnas.1011737107
  48. Xia, Y., H. Q. Chen, M. Zhang, Y. Q. Jiang, X. M. Hang, and H. L. Qin. 2011. Effect of Lactobacillus plantarum LP-Onlly on gut flora and colitis in interleukin-10 knockout mice. J. Gastroenterol. Hepatol. 26: 405-411. https://doi.org/10.1111/j.1440-1746.2010.06498.x
  49. Zeuthen, L. H., H. R. Christensen, and H. Frokiaer. 2006. Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with Gramnegative bacteria. Clin. Vaccine Immunol. 13: 365-375. https://doi.org/10.1128/CVI.13.3.365-375.2006
  50. Zhang, W., Y. Gu, Y. Chen, H. Deng, L. Chen, S. Chen, G. Zhang, and Z. Gao. 2010. Intestinal flora imbalance results in altered bacterial translocation and liver function in rats with experimental cirrhosis. Eur. J. Gastroenterol. Hepatol. 22: 1481-1486.

Cited by

  1. Gut-Targeted Immunonutrition Boosting Natural Killer Cell Activity Using Saccharomyces boulardii Lysates in Immuno-Compromised Healthy Elderly Subjects vol.17, pp.2, 2013, https://doi.org/10.1089/rej.2013.1500
  2. Oligofructose supplementation during pregnancy and lactation impairs offspring development and alters the intestinal properties of 21-d-old pups vol.13, pp.None, 2013, https://doi.org/10.1186/1476-511x-13-26
  3. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus vol.5, pp.None, 2013, https://doi.org/10.3389/fmicb.2014.00190
  4. Long-Term Use of Probiotics Lactobacillus and Bifidobacterium Has a Prophylactic Effect on the Occurrence and Severity of Pouchitis: A Randomized Prospective Study vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/208064
  5. Microencapsulated Bifidobacterium longum subsp. infantis ATCC 15697 Favorably Modulates Gut Microbiota and Reduces Circulating Endotoxins in F344 Rats vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/602832
  6. Modulation of Gut Microbiota in the Management of Metabolic Disorders: The Prospects and Challenges vol.15, pp.3, 2013, https://doi.org/10.3390/ijms15034158
  7. Enrichment of Bifidobacterium longum subsp. infantis ATCC 15697 within the human gut microbiota using alginate-poly-l-lysine-alginate microencapsulation oral delivery system: an in vitro anal vol.31, pp.3, 2014, https://doi.org/10.3109/02652048.2013.834990
  8. A Multispecies Probiotic Reduces Oral Candida Colonization in Denture Wearers vol.24, pp.3, 2013, https://doi.org/10.1111/jopr.12198
  9. Assessment of cell adhesion, cell surface hydrophobicity, autoaggregation, and lipopolysaccharide-binding properties of live and heat-killed Lactobacillus acidophilus CBT LA1 vol.51, pp.3, 2013, https://doi.org/10.7845/kjm.2015.5029
  10. Influence of prebiotics on Lactobacillus reuteri death kinetics under sub-optimal temperatures and pH vol.67, pp.2, 2013, https://doi.org/10.3109/09637486.2015.1136905
  11. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies vol.22, pp.7, 2013, https://doi.org/10.3748/wjg.v22.i7.2219
  12. Inhibitory Effect of Lactococcus lactis HY 449 on Cariogenic Biofilm vol.26, pp.11, 2013, https://doi.org/10.4014/jmb.1604.04008
  13. Transcriptomic Profile of Whole Blood Cells from Elderly Subjects Fed Probiotic Bacteria Lactobacillus rhamnosus GG ATCC 53103 (LGG) in a Phase I Open Label Study vol.11, pp.2, 2013, https://doi.org/10.1371/journal.pone.0147426
  14. Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease vol.9, pp.4, 2013, https://doi.org/10.1177/1756283x16645055
  15. Potential role of gut microbiota and tissue barriers in Parkinson's disease and amyotrophic lateral sclerosis vol.126, pp.9, 2016, https://doi.org/10.3109/00207454.2015.1096271
  16. Gut microbiota and obesity: Pathogenetic relationships and ways to normalize the intestinal microflora vol.88, pp.9, 2013, https://doi.org/10.17116/terarkh2016889135-142
  17. The role of Gut Microbiota in the development of obesity and Diabetes vol.15, pp.None, 2013, https://doi.org/10.1186/s12944-016-0278-4
  18. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challen vol.7, pp.1, 2013, https://doi.org/10.1186/s40104-016-0061-4
  19. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis vol.74, pp.20, 2013, https://doi.org/10.1007/s00018-017-2550-9
  20. Irritable bowel syndrome: a gut microbiota-related disorder? vol.312, pp.1, 2017, https://doi.org/10.1152/ajpgi.00338.2016
  21. Obesity and microbiota: an example of an intricate relationship vol.12, pp.1, 2013, https://doi.org/10.1186/s12263-017-0566-2
  22. Role of resveratrol in the management of insulin resistance and related conditions: Mechanism of action vol.54, pp.4, 2017, https://doi.org/10.1080/10408363.2017.1343274
  23. Microbiota‐gut‐brain axis: Interaction of gut microbes and their metabolites with host epithelial barriers vol.30, pp.6, 2018, https://doi.org/10.1111/nmo.13366
  24. New insights on atherosclerosis: A cross-talk between endocannabinoid systems with gut microbiota vol.10, pp.3, 2013, https://doi.org/10.15171/jcvtr.2018.21
  25. Infant colic: mechanisms and management vol.15, pp.8, 2013, https://doi.org/10.1038/s41575-018-0008-7
  26. Gluten and Functional Abdominal Pain Disorders in Children vol.10, pp.10, 2013, https://doi.org/10.3390/nu10101491
  27. Bidirectional gut-brain-microbiota axis as a potential link between inflammatory bowel disease and ischemic stroke vol.15, pp.None, 2013, https://doi.org/10.1186/s12974-018-1382-3
  28. Lactobacilli can attenuate inflammation in mouse macrophages exposed to polyethylene particles in vitro vol.11, pp.None, 2013, https://doi.org/10.1186/s13104-018-3676-z
  29. Dietary emulsifiers consumption alters anxiety-like and social-related behaviors in mice in a sex-dependent manner vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-018-36890-3
  30. Microbial treatment: the potential application for Parkinson’s disease vol.40, pp.1, 2013, https://doi.org/10.1007/s10072-018-3641-6
  31. Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice vol.103, pp.5, 2013, https://doi.org/10.1007/s00253-019-09617-1
  32. Probiotic properties of Lactobacillus strains with high cinnamoyl esterase activity isolated from jeot-gal, a high-salt fermented seafood vol.69, pp.4, 2019, https://doi.org/10.1007/s13213-018-1424-1
  33. Probiotics importance and their immunomodulatory properties vol.234, pp.6, 2013, https://doi.org/10.1002/jcp.27559
  34. Effects of the Dietary Probiotic, Enterococcus faecium NCIMB11181, on the Intestinal Barrier and System Immune Status in Escherichia coli O78-Challenged Broiler Chickens vol.11, pp.3, 2013, https://doi.org/10.1007/s12602-018-9434-7
  35. Probiotics for Parkinson’s Disease vol.20, pp.17, 2013, https://doi.org/10.3390/ijms20174121
  36. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review vol.27, pp.2, 2019, https://doi.org/10.1007/s40199-019-00284-1
  37. Non - alcoholic fatty liver disease and enteral insufficiency: comorbidity of their development vol.91, pp.12, 2013, https://doi.org/10.26442/00403660.2019.12.000134
  38. Gut Microbiota and Gestational Diabetes Mellitus: A Review of Host-Gut Microbiota Interactions and Their Therapeutic Potential vol.10, pp.None, 2020, https://doi.org/10.3389/fcimb.2020.00188
  39. Whole Food-Based Approaches to Modulating Gut Microbiota and Associated Diseases vol.11, pp.1, 2013, https://doi.org/10.1146/annurev-food-111519-014337
  40. Probiotics Alleviate the Progressive Deterioration of Motor Functions in a Mouse Model of Parkinson’s Disease vol.10, pp.4, 2013, https://doi.org/10.3390/brainsci10040206
  41. Chinese Propolis Prevents Obesity and Metabolism Syndromes Induced by a High Fat Diet and Accompanied by an Altered Gut Microbiota Structure in Mice vol.12, pp.4, 2013, https://doi.org/10.3390/nu12040959
  42. Profile of subpopulation composition of regulatory T lymphocytes and intestinal microbiota in patients with irritable bowel syndrome vol.22, pp.2, 2020, https://doi.org/10.15789/1563-0625-pos-1905
  43. The Potential Effects of Probiotics and ω-3 Fatty Acids on Chronic Low-Grade Inflammation vol.12, pp.8, 2013, https://doi.org/10.3390/nu12082402
  44. Cross-Talk between Diet-Associated Dysbiosis and Hand Osteoarthritis vol.12, pp.11, 2013, https://doi.org/10.3390/nu12113469
  45. The role of the adaptor molecule STING during Schistosoma mansoni infection vol.10, pp.None, 2013, https://doi.org/10.1038/s41598-020-64788-6
  46. Antimicrobial and Immunomodulatory Effects of Bifidobacterium Strains: A Review vol.30, pp.12, 2013, https://doi.org/10.4014/jmb.2007.07046
  47. Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases vol.15, pp.None, 2013, https://doi.org/10.3389/fnins.2021.753915
  48. Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5110276
  49. Dietary Pterostilbene Inhibited Colonic Inflammation in Dextran-Sodium-Sulfate-Treated Mice: A Perspective of Gut Microbiota vol.3, pp.1, 2021, https://doi.org/10.1097/im9.0000000000000047
  50. Bifidobacteria from human origin: interaction with phagocytic cells vol.130, pp.4, 2021, https://doi.org/10.1111/jam.14861
  51. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota vol.20, pp.3, 2021, https://doi.org/10.1111/1541-4337.12754
  52. Effect of Lactobacillus paracasei HII01 Supplementation on Total Cholesterol, and on the Parameters of Lipid and Carbohydrate Metabolism, Oxidative Stress, Inflammation and Digestion in Thai Hyperchol vol.11, pp.10, 2013, https://doi.org/10.3390/app11104333
  53. Probiotic and Functional Properties of Limosilactobacillus reuteri INIA P572 vol.13, pp.6, 2013, https://doi.org/10.3390/nu13061860
  54. The anti‐inflammatory and antiapoptotic effects of probiotic on induced neurotoxicity in juvenile hamsters vol.9, pp.9, 2013, https://doi.org/10.1002/fsn3.2435
  55. Diet and Pre-Intervention Washout Modifies the Effects of Probiotics on Gestational Diabetes Mellitus: A Comprehensive Systematic Review and Meta-Analysis of Randomized Controlled Trials vol.13, pp.9, 2021, https://doi.org/10.3390/nu13093045
  56. Impact of Gut Microbiome Lactobacillus spp. in Brain Function and its Medicament towards Alzheimer’s Disease Pathogenesis vol.15, pp.3, 2013, https://doi.org/10.22207/jpam.15.3.02
  57. Interleukin gene expression in broiler chickens infected by different Escherichia coli serotypes vol.14, pp.10, 2021, https://doi.org/10.14202/vetworld.2021.2727-2734
  58. Potential Probiotic Enterococcus faecium OV3-6 and Its Bioactive Peptide as Alternative Bio-Preservation vol.10, pp.10, 2021, https://doi.org/10.3390/foods10102264
  59. Novel Gut Microbiota Patterns Involved in the Attenuation of Dextran Sodium Sulfate-Induced Mouse Colitis Mediated by Glycerol Monolaurate via Inducing Anti-inflammatory Responses vol.12, pp.5, 2013, https://doi.org/10.1128/mbio.02148-21
  60. Dietary Fat Effect on the Gut Microbiome, and Its Role in the Modulation of Gastrointestinal Disorders in Children with Autism Spectrum Disorder vol.13, pp.11, 2013, https://doi.org/10.3390/nu13113818
  61. Effects of extraction methods on the digestibility, cytotoxicity, prebiotic potential and immunomodulatory activity of taro (Colocasia esculenta) water-soluble non-starch polysaccharide vol.121, pp.None, 2013, https://doi.org/10.1016/j.foodhyd.2021.107068
  62. Alterations in intestinal microbiota diversity, composition, and function in patients with sarcopenia vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-84031-0
  63. Dietary Magnesium Alleviates Experimental Murine Colitis through Modulation of Gut Microbiota vol.13, pp.12, 2013, https://doi.org/10.3390/nu13124188
  64. Intestinal Barrier and Permeability in Health, Obesity and NAFLD vol.10, pp.1, 2013, https://doi.org/10.3390/biomedicines10010083