DOI QR코드

DOI QR Code

THE VERTEX AND EDGE PI INDICES OF GENERALIZED HIERARCHICAL PRODUCT OF GRAPHS

  • Tavakoli, M. (Department of Mathematics, Ferdowsi University of Mashhad) ;
  • Rahbarnia, F. (Department of Mathematics, Ferdowsi University of Mashhad)
  • Received : 2012.09.05
  • Accepted : 2012.11.22
  • Published : 2013.05.30

Abstract

Pattabiraman and Paulraja [K. Pattabiraman, P. Paulraja, Vertex and edge PI indices of the generalized hierarchical product of graphs, Discrete Appl. Math. 160 (2012) 1376- 1384] obtained exact formulas for the vertex and edge PI indices of generalized hierarchical product of graphs. The aim of this note is to improve the main results of this paper.

Keywords

References

  1. R. Nasiri, H. Yousefi-Azari, M. R. Darafsheh, A. R. Ashrafi, Remarks on the Wiener index of unicyclic graphs, J. Appl. Math. & Comput. DOI 10.1007/s12190-012-0595-3.
  2. L. Barriere, F. Comellas, C. Daflo, M. A. Fiol, The hierarchical product of graphs, Discrete Appl. Math. 157 (2009) 36-48. https://doi.org/10.1016/j.dam.2008.04.018
  3. L. Barriere, C. Daflo, M. A. Fiol, M. Mitjana, The generalized hierarchical product of graphs, Discrete Math. 309 (2009) 3871-3881. https://doi.org/10.1016/j.disc.2008.10.028
  4. P. V. Khadikar, S. Karmarkar, A novel PI index and its applications to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (2001) 934-949. https://doi.org/10.1021/ci0003092
  5. P.V. Khadikar, On a novel structural descriptor PI, Nat. Acad. Sci. Lett. 23 (2000) 113-118.
  6. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and Edge PI Indices of Cartesian Product Graphs, Discrete Appl. Math. 156 (2008), 1780-1789. https://doi.org/10.1016/j.dam.2007.08.041
  7. M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, A matrix method for computing szeged and vertex PI indices of join and composition of graphs, Linear Algebra Appl. 429 (2008) 2702-2709. https://doi.org/10.1016/j.laa.2008.01.015
  8. K. Pattabiraman, P. Paulraja, Vertex and edge Padmakar-Ivan indices of the generalized hierarchical product of graphs, Discrete Appl. Math. 160 (2012) 1376-1384. https://doi.org/10.1016/j.dam.2012.01.021
  9. D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

Cited by

  1. Applications of the generalized hierarchical product of graphs in computing the vertex and edge PI indices of chemical graphs vol.63, pp.1, 2014, https://doi.org/10.1007/s11587-013-0162-8