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THE VERTEX AND EDGE PI INDICES OF GENERALIZED

HIERARCHICAL PRODUCT OF GRAPHS
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Abstract. Pattabiraman and Paulraja [K. Pattabiraman, P. Paulraja,
Vertex and edge PI indices of the generalized hierarchical product of graphs,
Discrete Appl. Math. 160 (2012) 1376- 1384] obtained exact formulas for
the vertex and edge PI indices of generalized hierarchical product of graphs.

The aim of this note is to improve the main results of this paper.
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1. Introduction

Throughout this paper all graphs considered are finite, simple and connected.
The distance dG(u, v) between the vertices u and v of a graph G is equal to the
length of a shortest path that connects u and v. Suppose G is a graph with vertex
and edge sets V = V (G) and E = E(G), respectively. Suppose e = ab ∈ E(G).
The number of edges of G whose distance to the vertex u is smaller than the
distance to the vertex v is denoted by mG

u (e). The edge PI index of G, PIe(G),
of a graph G is defined as PIe(G) =

∑
e=uv∈E(G)(m

G
u (e) +mG

v (e)) [4, 5]. In a

similar way, the quantities nG
a (e) is defined as the number of vertices closer to

a than to b. In other words, nG
a (e) = |{u ∈ V (G)|d(u, a) < d(u, b)}|. The vertex

PI index of G, PIv(G), is defined as the summation of [nG
u (uv) + nG

v (uv)] over
all edges of G [6, 7].

The edges e = uv and f = xy of G are said to be equidistant edges if
min{dG(u, x), dG(u, y)} = min{dG(v, x), dG(v, y)}. For e = uv inG, the number
of equidistant vertices of e is denoted by NG(e) and the number of equidistant
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edges of e is denoted by MG(e). Then the above definitions are equivalent to

PIv(G) = |V (G)||E(G)| −
∑

e∈E(G)

NG(e), PIe(G) = |E(G)|2 −
∑

e∈E(G)

MG(e).

Suppose G and H are graphs and U ⊆ V (G). The generalized hierarchical
product, denoted by G(U)⊓H, is the graph with vertex set V (G)×V (H) and two
vertices (g, h) and (g′, h′) are adjacent if and only if g = g′ ∈ U and hh′ ∈ E(H)
or, gg′ ∈ E(G) and h = h′. This graph operation introduced recently by Barriére
et al. [2, 3] and found some applications in computer science.

Most of our notation is standard and taken mainly from [1, 9]. The path
graph with n vertices is denoted by Pn.

2. Main results

Let G = (V,E) be a graph and U ⊆ V . We need some notation than taken
from [8]. We encourage the interested readers to consult this paper and references
therein for more information on this topic. Following Pattabiraman and Paulraja
[8], an u − v path through U in G(U) is an u − v path in G containing some
vertex w ∈ U (vertex w could be the vertex u or v). Let dG(U)(u, v) denote
the length of a shortest u − v path through U in G. Notice that, if one of
the vertices u and v belong to U , then dG(U)(u, v) = dG(u, v). A vertex x ∈
V (G(U)) is said to be equidistant from e = uv ∈ E(G(U)) through U in G(U),
if dG(U)(u, x) = dG(U)(v, x). For an edge e in G(U), let NG(U)(e) denote the
number of equidistant vertices of e through U in G(U). Then PIv(G(U)) can be
defined as follows:

PIv(G(U)) =
∑

e∈E(G(U))

(|V (G(U))| −NG(U)(e)).

For e ∈ E(G) and S ⊆ V (G), let N⟨S⟩(e) denote the number of equidistant
vertices of e (in G) contained in S. The edges e = uv and f = xy of G(U) are said
to be equidistant edges through U in G(U) if min{dG(U)(u, x), dG(U)(u, y)} =
min{dG(U)(v, x), dG(U)(v, y)}. Let MG(U)(e) denote the number of equidistant
edges of e through U in G(U). Then PIe(G(U)) is defined as follows:

PIe(G(U)) =
∑

e∈E(G(U))

(|E(G(U))| −MG(U)(e)).

Let Gi = (Vi, Ei), 1 ≤ i ≤ N , be a graph with vertex set Vi having a distin-
guished or root vertex 0. Following Barriére et al. [2, 3], the hierarchical product
H = GN ⊓ ... ⊓ G2 ⊓ G1 is the graph with vertices the N−tuples xN ...x3x2x1,
xi ∈ Vi, and edges defined by the adjacencies:

xN ...x3x2x1 ∼



xN ...x3x2y1 if y1 ∼ x1 in G1,
xN ...x3y2x1 if y2 ∼ x2 in G2 and x1 = 0,
xN ...y3x2x1 if y3 ∼ x3 in G3 and x1 = x2 = 0,

...
...

yN ...x3x2x1 if yN ∼ xN in GN and x1 = x2 = ... = xN−1 = 0.
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A path graph with n vertices, is denoted by Pn and a caterpillar is a tree in
which all the vertices are within distance 1 of a central path. By definition of
hierarchical product, it is clear that if Pm is a path graph and Sn is a rooted
star graph with root vertex r such that deg(r) > 1 then Pm ⊓ Sn is a caterpillar
with order nm and generally, the hierarchical product of an arbitrary sequence
of acyclic graphs is again an acyclic graph. Therefore, we can write:

Lemma 2.1. If G1, G2, . . . , Gn are trees with orders m1, . . . , mn, respectively,
then

PIv(Gn ⊓ ... ⊓G2 ⊓G1) = (
n∏

i=1

mi − 1)
n∏

i=1

mi,

PIe(Gn ⊓ ... ⊓G2 ⊓G1) = (

n∏
i=1

mi − 1)(

n∏
i=1

mi − 2).

Let G1, G2, . . . , Gn be connected rooted graphs with root vertices r1, · · · ,
rn, respectively and e = (an, ..., ai+1, u, ri−1, ..., r1)(an, ..., ai+1, v, ri−1, ..., r1) is
an edge of H such that uv ∈ E(Gi). In order to simplify our notation, we
will denote n(an,...,ai+1,u,ri−1,...,r1)(e) by n1(e), n(an,...,ai+1,v,ri−1,...,r1)(e) by n2(e),
m(an,...,ai+1,u,ri−1,...,r1)(e) by m1(e) and m(an,...,ai+1,v,ri−1,...,r1)(e) by m2(e).

In what follows, let
∏j

i fi = 1 and
∑j

i fi = 0 for each i, j ∈ {0, 1, 2, ...}, that
i − j = 1. Furthermore, let

∏j
i fi =

∑j
i fi = 0 for every i, j ∈ {0, 1, 2, ...},

such that i − j > 1. Also, for a sequence of graphs, G1, G2, . . . , Gn, we set

|Vi,j | =
∏j

k=i |V (Gk)| and |V l
i,j | =

∏j
k=i,k ̸=l |V (Gk)|.

The main results of [8] are Theorems 2.2 and 3.1. We claim that these
results are incorrect. We first explain the reason that makes Theorem 2.2
to be incorrect. In [8, Eq. 2.3], the authors claim that for each edge e′ =
(ur, vi)(us, vi) ∈ G(U) ⊓H such that vi ∈ V (H) and e = urus ∈ E(G), we have
NG(U)⊓H(e′) = |V (H)|NG(U)(e). In Figure 2, a counterexample for this argu-
ment is presented. Notice that if U = {r}, e′ = (y, 1)(z, 1) thenNG(U)⊓H(e′) = 6,
but |V (H)|NG(U)(e) = 2, which is impossible. In Figure 3, a family of enough
large counterexamples are presented. In this figure, H = Pm, U = {x} and
|V (G)| = 2n+1. Then PIv(G(U)⊓H) = 2nm(2nm+2m+n−2)+m(m−1). But,
[8, Theorem 2.2] implies that PIv(G(U)⊓H) = 2nm(3nm+2m−1)+m(m−1).
Then |2nm(2nm+2m+n−2)+m(m−1)−(2nm(3nm+2m−1)+m(m−1))| =
2nm(nm− n+ 1) > 0, leads to another contradiction.

In the following theorem a correct form of [8, Theorem 2.2] is presented.

Theorem 2.2. Suppose G1, G2, . . . , Gn are connected rooted graphs with root
vertices r1, · · · , rn, respectively. Then

PIv(Gn ⊓ ... ⊓G2 ⊓G1) =

n∑
i=1

|V i
1,n|PIv(Gi) +

n−1∑
i=1

|Vi+1,n|(|E(Gi)| −Nri)



472 M. Tavakoli and F. Rahbarnia

×
n∑

j=i+1

(|V (Gj)| − 1)|V1,j−1|,

where Nri = |{uv ∈ E(Gi) | dGi(u, ri) = dGi(v, ri)}|.

Proof. LetH = Gn⊓...⊓G2⊓G1 and e = (an, ..., ai+1, u, ri−1, ..., r1)(an, ..., ai+1, v
, ri−1, ..., r1) be an edge of H such that uv ∈ E(Gi), and aj ∈ V (Gj). It follows
from the edge structure of H that, if dGi(u, ri) ̸= dGi(v, ri) then

nH
1 (e)+nH

2 (e) = (nGi
v (uv)+nGi

u (uv))
i−1∏
j=1

|V (Gj)|+
n∑

j=i+1

(|V (Gj)|−1)

j−1∏
k=1

|V (Gk)|

and if dGi(u, ri) = dGi(v, ri) then

nH
1 (e) + nH

2 (e) = (nGi
v (uv) + nGi

u (uv))
i−1∏
j=1

|V (Gj)|.

Thus, the summation of [nH
u (uv) + nH

v (uv)] over all edges of copies of Gi, is
equal to:

(

n∏
j=1,j ̸=i

|V (Gj)|)PIv(Gi)+(|E(Gi)|−Nri)(

n∏
j=i+1

|V (Gj)|)
n∑

j=i+1

(|V (Gj)|−1)

j−1∏
k=1

|V (Gk)|.

Therefore,

PIv(H) =
n∑

i=1

[
(

n∏
j=1,j ̸=i

|V (Gj)|)PIv(Gi)

+ (|E(Gi)| −Nri)(

n∏
j=i+1

|V (Gj)|)
n∑

j=i+1

(|V (Gj)| − 1)

j−1∏
k=1

|V (Gk)|
]

=
n∑

i=1

(
n∏

j=1,j ̸=i

|V (Gj)|)PIv(Gi)

+
n−1∑
i=1

(
n∏

j=i+1

|V (Gj)|)(|E(Gi)| −Nri)
n∑

j=i+1

(|V (Gj)| − 1)

j−1∏
k=1

|V (Gk)|,

which proves the theorem. �
Corollary 2.3. Suppose G1, G2, . . . , Gn are connected rooted graphs with root
vertices r1, · · · , rn, respectively. We also assume that ri, 1 ≤ i ≤ n, lies on no
odd cycle of Gi. Then

PIv(Gn ⊓ ... ⊓G2 ⊓G1) =
n∑

i=1

|V i
1,n|PIv(Gi) +

n−1∑
i=1

|Vi+1,n||E(Gi)|

×
n∑

j=i+1

(|V (Gj)| − 1)|V1,j−1|.
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We now prove that the [8, Theorem 3.1] is incorrect. We first explain the
reason that makes this Theorem to be incorrect. In [8, Eq. 3.8 and 3.9], the
authors claim that for each edge e′ = (ur, vi)(us, vi) ∈ G(U) ⊓ H such that
vi ∈ V (H) and e = urus ∈ E(G), we have MG(U)⊓H(e′) = |V (H)|MG(U)(e) +
|E(H)|N⟨U⟩(e). In Figure 4, a counterexample for this argument is presented.
Notice that if U = {x, y, z} and e′ is corresponding edge of e in G(U) ⊓ H
then MG(U)⊓H(e′) = 7, but |V (H)|MG(U)(e) + |E(H)|N⟨U⟩(e) = 9, which is
impossible. On the other hand, by [8, Theorem 3.1] PIe(G(U) ⊓H) = 168, that
is incorrect. The correct value of PIe is 164.

In the following theorem a correct form of [8, Theorem 3.1] is presented.

Theorem 2.4. Suppose G1, G2, . . . , Gn are connected rooted graphs with root
vertices r1, . . . , rn, respectively. Then

PIe(Gn ⊓ ... ⊓G2 ⊓G1) =

n∑
i=1

|Vi+1,n|PIe(Gi)

+

n∑
i=1

|Vi+1,n|

(
i−1∑
j=1

|E(Gj)||Vj+1,i−1|

)
PIv(Gi)

+

n∑
i=1

(
(|E(Gi)| −Nri)|Vi+1,n|

n∑
j=i+1

(
(|V (Gj)| − 1)

×
j−1∑
k=1

|E(Gk)||Vk+1,j−1|+ |E(Gj)|
))

,

where Nri = |{uv ∈ E(Gi) | dGi(u, ri) = dGi(v, ri)}|.

Proof. LetH = Gn⊓...⊓G2⊓G1. By the edge structure ofH, it is not difficult to
see that, for every edge e = (an, ..., ai+1, u, ri−1, ..., r1)(an, ..., ai+1, v, ri−1, ..., r1)
of H such that uv ∈ E(Gi) and aj ∈ V (Gj) (for j = i + 1, i + 2, ..., n), if
dGi(u, ri) ̸= dGi(v, ri) then

mH
1 (e) +mH

2 (e) = mGi
u (uv) +mGi

v (uv) + (nGi
u (uv) + nGi

v (uv))

i−1∑
j=1

|E(Gj)|

×
i−1∏

k=j+1

|V (Gk)|+
n∑

j=i+1

(
(|V (Gj)| − 1)

j−1∑
k=1

|E(Gk)|
j−1∏

l=k+1

|V (Gl)|+ |E(Gj)|
)

and if dGi
(u, ri) = dGi

(v, ri) then

mH
1 (e)+mH

2 (e) = mGi
u (uv)+mGi

v (uv)+(nGi
u (uv)+nGi

v (uv))

i−1∑
j=1

|E(Gj)|
i−1∏

k=j+1

|V (Gk)|.

Thus, the summation of [mH
u (uv) +mH

v (uv)] over all edges of copies of Gi, is
equal to:

(
n∏

j=i+1

|V (Gj)|)PIe(Gi) + (
n∏

j=i+1

|V (Gj)|)(
i−1∑
j=1

|E(Gj)|
i−1∏

k=j+1

|V (Gk)|)PIv(Gi)
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+ (|E(Gi)| −Nri)(

n∏
j=i+1

|V (Gj)|)

×
n∑

j=i+1

(
(|V (Gj)| − 1)

j−1∑
k=1

|E(Gk)|
j−1∏

l=k+1

|V (Gl)|+ |E(Gj)|
)

and therefore

PIe(H) =

n∑
i=1

[
(

n∏
j=i+1

|V (Gj)|)PIe(Gi)

+ (
n∏

j=i+1

|V (Gj)|)(
i−1∑
j=1

|E(Gj)|
i−1∏

k=j+1

|V (Gk)|)PIv(Gi)

+ (|E(Gi)| −Nri)(

n∏
j=i+1

|V (Gj)|)
n∑

j=i+1

(
(|V (Gj)| − 1)

×
j−1∑
k=1

|E(Gk)|
j−1∏

l=k+1

|V (Gl)|+ |E(Gj)|
)]

=
n∑

i=1

(
n∏

j=i+1

|V (Gj)|)PIe(Gi)

+
n∑

i=1

(
n∏

j=i+1

|V (Gj)|)(
i−1∑
j=1

|E(Gj)|
i−1∏

k=j+1

|V (Gk)|)PIv(Gi)

+

n∑
i=1

(|E(Gi)| −Nri)(

n∏
j=i+1

|V (Gj)|)

×
n∑

j=i+1

(
(|V (Gj)| − 1)

j−1∑
k=1

|E(Gk)|
j−1∏

l=k+1

|V (Gl)|+ |E(Gj)|
)
,

as desired. �

Corollary 2.5. Suppose G1, G2, . . . , Gn are connected rooted graphs with root
vertices r1, . . . , rn, respectively. We also assume that ri lies on no odd cycle of
Gi, i = 1, 2, ..., n. Then

PIe(Gn ⊓ ... ⊓G2 ⊓G1) =

n∑
i=1

|Vi+1,n|PIe(Gi) +

n∑
i=1

|Vi+1,n|

(
i−1∑
j=1

|E(Gj)||Vj+1,i−1|

)

× PIv(Gi) +

n∑
i=1

(
|E(Gi)||Vi+1,n|

n∑
j=i+1

((|V (Gj)| − 1)

×
j−1∑
k=1

|E(Gk)||Vk+1,j−1|+ |E(Gj)|)
)
.
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Figure 1. The Hierarchical Product of Three Copies of C5

Figure 2. The Hierarchical Product of G(U) and H

Example 2.6. Consider a rooted cycle graph Cm with root vertex r. By defi-
nition of this graph, Figure 1, it is clear that

Nr =

{
1 2 - m
0 2 | m

, PIv(Cm) =

{
m(m− 1) 2 - m
m2 2 | m

, PIe(Cm) =

{
m(m− 1) 2 - m
m(m− 2) 2 | m

.

So, by Theorems 2.2 and 2.4, we calculate that

1. PIv(Cm ⊓ · · · ⊓ Cm︸ ︷︷ ︸
n

) =

{
m2n −mn 2 - m
nmn+1 + m

m−1

(
m2n − nmn+1 + (n− 1)mn

)
2 | m

,

2. PIe(Cm ⊓ · · · ⊓ Cm︸ ︷︷ ︸
n

) =

{
m2n+1

m−1
− mn+3

(m−1)2
+mn+1(1 + 1

(m−1)2
) + m

m−1
2 - m

1
(m−1)2

(
m2n+2 − 2mn+1(2m− 1) +m(3m− 2)

)
2 | m

.
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Figure 3. The Hierarchical Product of G(U) and H

Figure 4. The Generalized Hierarchical Product of G(U) and H
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