DOI QR코드

DOI QR Code

Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

  • Received : 2013.04.06
  • Accepted : 2013.05.05
  • Published : 2013.08.20

Abstract

The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry.

Keywords

References

  1. Gregory, P. J. Porphyrins Phthalocyanines 2000, 4, 432-437. https://doi.org/10.1002/(SICI)1099-1409(200006/07)4:4<432::AID-JPP254>3.0.CO;2-N
  2. Zollinger, H. Color Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments; New York, VCH: Weinheim, 1987.
  3. Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook Vol. 15-20; Academic Press: San Diego, 2003.
  4. Leznoff, C. C.; Lever, A. B. P. Phthalocyanines Properties and Applications, Vol. 1; New York, VCH: 1989.
  5. Lim, J. M.; Yoon, Z. S.; Shin, J. Y.; Kim, K. S.; Yoon, M. C.; Kim, D. Chem. Commun. 2009, 261-273.
  6. Fukuda, T.; Kobayashi, N. Dalton Trans. 2008, 4685-4704.
  7. Fukuda, T.; Ogi, Y.; Kobayashi, N. Chem. Commun. 2006, 159-161.
  8. Reddya, K. R. V.; Keshavayya, J. Dyes Pigm. 2002, 53, 187-194. https://doi.org/10.1016/S0143-7208(02)00011-6
  9. Mikhalenko, S. A.; Derkacheva, V. M.; Luk'yanets, E. A. Zh. Obshch. Khim. 1981, 51, 1650-1657.
  10. Nemykin, V. N.; Kobayashi, N.; Nonomura, T.; Luk'yanets, E. A. Chem. Lett. 2000, 184-185.
  11. Subbotin, N. B.; Nemykin, V. N.; Voloshin, Y. Z. Mendeleev Commun. 1993, 121-122.
  12. Mikhalenko, S. A.; Korobkova, E. V.; Luk'yanets, E. A. Zh. Obshch. Khim. 1970, 40, 400-403.
  13. Volkova, K. A.; Avramenkob, G. V.; Negrimovskiia, V. M.; Luk'yanetsa, E. A. Russ. J. Gen. Chem. 2007, 77, 1126-1133. https://doi.org/10.1134/S1070363207060308
  14. Kobayashi, N.; Ogata, H.; Nonaka, N.; Luk'yanets, E. A. Chem. Eur. J. 2003, 9, 5123-5134. https://doi.org/10.1002/chem.200304834
  15. Pariser, R.; Parr, R. G. J. Chem. Phys. 1953, 21, 466-471. https://doi.org/10.1063/1.1698929
  16. Pople, J. A. Trans. Faraday Soc. 1953, 49, 1375-1385. https://doi.org/10.1039/tf9534901375
  17. Bene, J. D.; Jaffe, H. H. J. Chem. Phys. 1968, 48, 1807-1813. https://doi.org/10.1063/1.1668915
  18. Ridley, J. E.; Zerner, M. C. Theoret. Chim. Acta 1973, 32, 111-134. https://doi.org/10.1007/BF00528484
  19. Han, Y. K.; Lee, S. U. J. Chem. Phys. 2004, 121, 609-611. https://doi.org/10.1063/1.1737297
  20. Han, Y. K.; Lee, S. U. Chem. Phys. Lett. 2002, 366, 9-16. https://doi.org/10.1016/S0009-2614(02)01460-4
  21. Guillaumont, D.; Nakamura, S. Dyes Pigm. 2000, 46, 85-92. https://doi.org/10.1016/S0143-7208(00)00030-9
  22. Tozer, D. T.; Handy, N. C. Phys. Chem. Chem. Phys. 2000, 2, 2117-2121. https://doi.org/10.1039/a910321j
  23. Slater, J. C. The Self-Consistent Field for Molecular and Solids. Vol. 4: Quantum Theory of Molecular and Solids; McGraw-Hill: New York, 1974.
  24. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200- 1211. https://doi.org/10.1139/p80-159
  25. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
  26. Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824. https://doi.org/10.1103/PhysRevB.33.8822
  27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  28. Perdew, J. P.; Yang, Y. Phys. Rev. B 1992, 45, 13244-13249. https://doi.org/10.1103/PhysRevB.45.13244
  29. Van, V. T.; Scuseria, G. E. J. Chem. Phys. 1998, 109, 400-410. https://doi.org/10.1063/1.476577
  30. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. https://doi.org/10.1063/1.464913
  31. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785-789.
  32. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664-675. https://doi.org/10.1063/1.475428
  33. Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377. https://doi.org/10.1063/1.464304
  34. Yanai, T.; Tew, D.; Handy, N. Chem. Phys. Lett. 2004, 393, 51-57. https://doi.org/10.1016/j.cplett.2004.06.011
  35. Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J. Chem. Phys. 2001, 115, 3540-3544. https://doi.org/10.1063/1.1383587
  36. Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1993, 85, 441-450. https://doi.org/10.1007/BF01112983
  37. Bergner, A.; Dolg, M.; Kuechle, W.; Stoll, H.; Preuss, H. Mol. Phys. 1993, 80, 1431-1441. https://doi.org/10.1080/00268979300103121
  38. Frisch, M. J. et al. Gaussian 03, Revision C.02. Wallingford, CT: Gaussian, Inc.; 2004.
  39. Nemykin, V. N.; Hadt, R. G.; Belosludov, R. V.; Mizuseki, H.; Kawazoe, Y. J. Phys. Chem. A 2007, 111, 12901-12913. https://doi.org/10.1021/jp0759731
  40. Soldatova, A. V.; Kim, J.; Peng, X.; Rosa, A.; Ricciardi, G.; Kenney, M. E.; Rodgers, M. A. J. Inorg. Chem. 2007, 46, 2080-2093. https://doi.org/10.1021/ic061524o
  41. Rosa, A.; Baerends, E. J. Inorg. Chem. 1994, 33, 584-595. https://doi.org/10.1021/ic00081a029
  42. Lee, S. U.; Kim, J. C.; Mizuseki, H.; Kawazoe, Y. Chem. Asian J. 2010, 5, 1341-1346.

Cited by

  1. Roles of Octabutoxy Substitution and J-Aggregation in Stabilization of the Excited State in Nickel Phthalocyanine vol.118, pp.29, 2014, https://doi.org/10.1021/jp5036629
  2. Tuning the Structure and Photophysics of a Fluorous Phthalocyanine Platform vol.120, pp.38, 2016, https://doi.org/10.1021/acs.jpca.6b07024
  3. Photophysical and TDDFT investigation for (E, E)-2, 5-bis [2-(4-(dimethylamino)phenyl) ethenyl]pyrazine (BDPEP) laser dye in restricted matrices vol.1217, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2020.128403
  4. Spectroscopic investigation, DFT and TD-DFT calculations of 7-(Diethylamino) Coumarin (C466) vol.1248, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2021.131413