• Title/Summary/Keyword: Dye/pigments

Search Result 34, Processing Time 0.02 seconds

Simultaneous Analysis of the Coloring Compounds in Indigo, Phellodendron bark, and Madder Dye Using HPLC-DAD-MS

  • Ahn, Cheunsoon;Zeng, Xia;Obendorf, S. Kay
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.6
    • /
    • pp.827-836
    • /
    • 2013
  • Indigotin, indirubin, berberine, palmatine, alizarin, and purpurin are major pigments of indigo plant, Phellodendron bark, and madder. The six pigments were examined using the HPLC-DAD-MS instrument for the purpose of the simultaneous detection of the pigments in a single sample run. The HPLC-DAD-MS method examined the individual pigment solutions in DMSO, a solution containing 6 pigments, and the DMSO extract of the silk dyed with a dye solution of 5 pigments excluding indirubin. The retention times of the HPLC chromatograms, ${\lambda}_{max}$ of the uv-vis absorption bands in the DAD analyses, and the molecular ions detected for the compound peaks in the MSD analyses were consistent throughout the analyses of individual pigment solutions, mixed pigment solutions, and dye extracted from silk dyeing. The developed instrumental method of the simultaneous detection of six pigments can identify dye in an exhumed textile if the textile is dyed using any one (or multiple) pigments of indigo, Phellodendron bark, or madder plant.

Application of Xanthene Dyes with Fluorescein-Derived Structures for Production of Fluorescent Pigments, and The Analysis of The Optical Properties of The Pigments (플루오레세인 유도체를 갖는 잔틴계 염료의 형광안료 제조로의 응용 및 제조된 안료의 광학 특성 분석)

  • Bae, Su-whan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.303-316
    • /
    • 2018
  • In this study, I investigated the applicability of fluorescein-derived xanthene dyes to fluorescent pigment and the controllability of the optical properties of manufactured pigments. Eosin Y (D&C Red No.22) and phloxine B (D&C Red No.28) were mainly used as a dye to prepare the pigment. Dyes dissolved in a solvent were poured into a powder dispersed in the solvent, then dried and pulverized to fabricate the pigments. Optical characteristics related with fluorescence of the prepared pigment were measured. The optical properties of pigments were varied depending on the solvent used, content of the dye in the pigment, and the ratio of dyes when more then two dyes were mixed. According to the experiment result, it seems that some of the dyes attached to the powder showed fluorescence while the rest did not contribute to it. From the result of pigment washing experiment to explore the binding (or interaction) strength and characteristics of the powder-dye system constituting the pigment, it seems that there are two or more different interactions existing in the pigment system, one of which is relatively stronger than the solvent-dye interaction.

One-Step Enzymatic Synthesis of Blue Pigments from Geniposide for Fabric Dyeing

  • Cho, Y.J.;Kim, S.Y.;Kim, J.;Choe, E.K.;Kim, S.I.;Shin, H.J.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.230-234
    • /
    • 2006
  • In this study, we describe a one-step chemoenzymatic reaction for the production of natural blue pigments, in which the geniposide from Gardenia extracts is transformed by glycosidases to genipin. Genipin is then allowed to react with amino acids, thereby generating a natural blue pigment. The ${\beta}-glycosidases$, most notably Isolase (a variant of ${\beta}-glucanase$), recombinant ${\beta}-glycosidases$, Cellulase T, and amylases, were shown to hydrolyze geniposide to produce the desired pigments, whereas the ${\alpha}-glycosidases$ did not. Among the 20 tested amino acids, glycine and tyrosine were associated with the highest dye production yields. The optimal molar ratio of geniposide to glycine, two reactants relevant to pigment production, was unity The natural blue pigments produced in this study were used to dye cotton, silk, and wool. The color yields of the pigments were determined to be significantly higher than those of other natural dyes. Furthermore, the color fastness properties of these dyes were fairly good, even in the absence of mordant.

Comparison of Painting Characteristics on Portraits by Nondestructive Analysis of Joseon Dynasty in 18th Century - Focusing on Yu Eon-ho's Portrait - (비파괴 성분 분석을 통한 18세기 초상화의 채색 특성 비교 고찰 - 유언호 초상화를 중심으로 -)

  • Song, You Na;Lee, Han Hyeong;Chung, Yong Jae;Lee, Hye Yoon
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.89-100
    • /
    • 2016
  • We estimated pigments and painting techniques with nondestructive analysis for Yu Eonho's portrait made in the eighteenth century, then compared with 11 portraits and painting characteristics at that time. The pigments used to Yu Eon-ho's portrait include lead white, yellow dye, cinnabar, minium, and pink dye, malachite, azurite, iron oxide red and brown dye, blue and pink dye for purple. In the result compared with painted pigments of 11 portraits, iron oxide red without cinnabar was used on the face part and organic green dye only was used instead of inorganic pigments on the other side of clothing after Yu Eonho's portraits portrait. This study is show the painting techniques on the portraits in the late $18^{th}$ century. We expect to use as useful referencing data for the study on the coloring technique of a portrait in the late Joseon Dynasty.

A Study of the Characteristics of Painting Materials Used in Welcome Feast for the Pyeongan Governor: Focusing on Banquet at Yeongwangjeong Pavilion (평안감사향연도(平安監司饗宴圖)의 채색 재료 특성 연구 -연광정연회도(練光亭宴會圖)를 중심으로-)

  • Park, Jin Ho;Chang, Yeon Hee;Ko, Soo Rin
    • Conservation Science in Museum
    • /
    • v.28
    • /
    • pp.109-136
    • /
    • 2022
  • This study analyzes the , one of the three panels of 《Welcoming Banquets for the Governor of Pyeong-an》, a documentary painting of the late Joseon Dynasty, with the aim to identify the coloring materials used in the painting. The painting was first imaged at each wavelength in order to minimize the potential problems in the process of analyzing specific parts. This study applied X-rays to identify ink, gold, and organic and inorganic pigments and used infrared rays to find ink and copper-based pigments. It also applied hyperspectral imaging to distinguish organic pigments from black, blue, and green materials. It also analyzed spots selected for each color to identify the following materials: white lead (white), ink/indigo (black), a combination of red lead and cinnabar (red), pink dye, purple dye, iron oxides (brown), orpiment/dye (yellow), malachite/malachite and yellow dye/indigo (green), azurite/white lead and indigo/indigo (blue), indigo and cochineal (violet), and gold leaf (gold). It is expected that more efficient analysis will be made possible by securing a sufficient library for each wavelength.

Eco-printing Using Chitosan and Natural Colorants(1) (키토산과 천연색소를 이용한 Eco-Printing(제1보))

  • Kim, Chae-Yeon;Shin, Youn-Sook
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.90-99
    • /
    • 2011
  • The aim of this study is to develope eco-printing method using natural pigments and chitosan as a natural binder. Three chitosans with different molecular weights were employed to find appropriate conditions including chitosan concentration and pigment/binder ratio. Dye uptake, color and fastnesses of the printed fabrics were evaluated to find optimum conditions within the range of experiments carried out in this study. The effectiveness of chitosan as a printing binder was examined in comparison with color, dye uptake, and fastnesses of conventional synthetic binder and guar gum. It was found that chitosans with low or medium molecular weight were appropriate. Using low molecular weight chitosan, optimum concentrations were 1.7% for charcoal, madder and chlorophyll, whereas 2.2% for ocher, yellow soil, indigo and cochineal. Regardless of molecular weight and concentration of chitosan, the color fastnesess of fabrics printed with mineral pigments were superior to those of the fabrics printed with plant and animal pigments. As pigment/chitosan ratio became higher, rubbing fastness was decreased by 1-3 grade. The colorfastness of printed fabric with chitosan binder was similar to that with synthetic binder, which was higher than that with guar gum.

Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

  • Lee, Sang Uck
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2276-2280
    • /
    • 2013
  • The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry.

Dyeing Behavior of Silk Dyed with Indigo Leaf Powder Using Reduction and Nonreduction Dyeing and Its Relationship with the Amount of Indigotin and Indirubin Adsorbed in Silk

  • Yoo, Wansong;Ahn, Cheunsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.5
    • /
    • pp.753-767
    • /
    • 2019
  • Dyeing behavior of indigo leaf powder was examined in regards to the effect of the amount of pigments on color and dye adsorption for silk dyed by reduction and nonreduction dyeing. The amount of indigotin and indirubin pigments adsorbed in dyed silk was examined by HPLC-DAD analysis. The color of dyed silk showed 7.7BG - 2.7B hue when silk was dyed at $50^{\circ}C$, and 3.5G - 4.9BG when dyed at $70^{\circ}C$. Blue ($b^*$) and green ($a^*$) color decreased as the pH of dyebath increased. When silk was dyed using nonreduction, R (red) and RP (red purple) hue and R hue was more apparent in samples dyed at $90^{\circ}C$. In reduction dyeing, amount of indigotin detected from silk exceeded the amount that was initially contained in the input dye. The amount of indirubin was lower than indirubin that was initially in the powder. In nonreduction dyeing, silk showed a higher amount of indirubin adsorption compared to silk dyed by reduction. The amount of indigotin adsorbed in silk was lower than the amount initially contained in the input dye. The amount of indigotin and indirubin adsorption was primarily dependent upon the dyeing method-reduction or nonreduction along with dyeing temperature and the pH of dyebath.

The Effects of Indigotin and Indirubin Pigments on the Dyeability and the Color of Silk Dyed with Indigo and Indirubin Mixed Dye (인디고 및 인디루빈 표준 혼합염료에서 인디고틴과 인디루빈 색소가 견직물에 대한 염착성과 색상에 미치는 영향 연구)

  • Yoo, Wansong;Ahn, Cheunsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.914-928
    • /
    • 2017
  • This research investigated the effect of pH of dyebath and dyeing temperature on the dyeability of indigotin and indirubin on silk as well as the relationship between the amount of indigotin and indirubin detected from the dyed silk through HPLC-DAD analysis and the color of samples measured using a spectro-colorimeter. Indigo standard dye and indirubin standard dye were deliberately mixed by ratios 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 to dye silk with a different pH of dyebath (7, 11) and different dyeing temperatures ($50^{\circ}C$, $70^{\circ}C$). The amount of indigotin and indirubin pigments in silk was calculated using regression equations obtained from standard calibration curves of indigotin and indirubin. A higher indigotin percent ratio resulted in the higher K/S values and the higher amount of indigotin detected from silk. However, higher indirubin percent ratio in the mixed dye did not relate to the higher indirubin pigment detected in silk. While indirubin showed low or negative contribution to the K/S values, it showed a higher effect on the color of dyed silk. Higher amounts of indirubin in dyed silk resulted in a darker PB color, which led to P color with increases in indirubin content.

Physiochemical Properties and Dyeability of Safflower Colorants Extracted by Ultrasonic Treatment (초음파로 추출된 홍화색소의 특성 분석과 염색성 평가)

  • Kim, Yong-Sook;Choi, Jong-Myoung
    • Fashion & Textile Research Journal
    • /
    • v.11 no.2
    • /
    • pp.337-343
    • /
    • 2009
  • This study systematically investigated a method for extraction of safflower (Carthamus tinctorius Linnaeus) colorants by ultrasonic treatment. Compared to pigments productivity and cell wall structures of safflower after general and ultrasonic method, the ultrasonic method showed high extraction efficiency of safflower pigments due to destruction of safflower cell wall caused by high vibration energies. Microscopic analysis confirmed the hypothesis that the ultrasonic treatment of safflower caused its cell wall structure loosened and made efficient extraction of safflower pigments. And also, LC-MS/MS analysis revealed that productivities of the yellow and red safflower pigments by ultrasonic method were 21.9% and 14.6% higher, respectively, than those of pigments extracted by general method. The ultrasonic extracted yellow and red colorants could be used to dye not only natural fibers like cotton, silk and wool, but also synthetic fiber like nylon, and generally gave a better color tone than the general extracted colorants from safflower due to the affinities of red and yellow colorant on different fibers. As the yellow and red colorant were extracted by ultrasonic treatment in water, the K/S value on of 550/440nm of cotton and rayon was increased but in the case of silk and wool the change of this value was almost not detected. Finally, this technique might provide a solution to establish reproducibility and standardization for the extraction and dyeing methods on fabrics.