DOI QR코드

DOI QR Code

First-Principles Study of the Three Polymorphs of Crystalline 1,1-Diamino-2,2-dinitrotheylene

  • Wu, Qiong (Institute for Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology) ;
  • Zhu, Weihua (Institute for Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology) ;
  • Xiao, Heming (Institute for Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology)
  • Received : 2013.03.04
  • Accepted : 2013.05.05
  • Published : 2013.08.20

Abstract

The electronic structure, optical spectra, and thermodynamic properties of the three FOX-7 polymorphs (${\alpha}$, ${\beta}$, and ${\gamma}$) have been studied systematically using density functional theory. The LDA (CA-PZ) and generalized gradient approximation (GGA) (PW91) functions were used to relax the three FOX-7 phases without any constraint. Their density of states and partial density of states were calculated and analyzed. The band gaps for the three phases were calculated and the sequence of their sensitivity was presented. Their absorption coefficients were computed and compared. The thermodynamic functions including enthalpy (H), entropy (S), free energy (G), and heat capacity ($C_p$) for the three phases were evaluated.

Keywords

References

  1. Bemm, U.; Sstmark, H. Acta Crystallogr., Sect. C 1998, 54, 1997. https://doi.org/10.1107/S0108270198007987
  2. Karlsson, S.; Sstmark, H.; EldsTter, C.; Carlsson, T.; Bergman, H.; Wallin, S.; Pettersson, A. Detonation and Sensitivity Properties of FOX-7 and Formulations Containing FOX-7, 12th Symposium (International) on Detonation, San Diego, California, 11-16 August, 2002.
  3. Kempa, P. B.; Herrmann, M. Part. Syst. Charact. 2005, 22, 418. https://doi.org/10.1002/ppsc.200501006
  4. Evers, J.; Klapotke, T. M.; Mayer, P.; Oehlinger, G.; Welch, J. M. Inorg. Chem. 2006, 45, 4996. https://doi.org/10.1021/ic052150m
  5. Crawford, M. J.; Evers, J.; Gobel, M.; Klapotke, T. M.; Mayer, P.; Oehlinger, G.; Welch, J. M. Propell. Explos. Pyrot. 2007, 32, 478. https://doi.org/10.1002/prep.200700240
  6. Sorescu, D. C.; Boatz, J. A.; Thompson, D. L. J. Phys. Chem. A 2001, 105, 5010. https://doi.org/10.1021/jp010289m
  7. Zerilli, F. J. J. Phys. Chem. A 2007, 111, 1721. https://doi.org/10.1021/jp067709y
  8. Trzciriski, W. A.; Cudzilo, S.; Chylek, Z.; Szymaiczyk, L. J. Hazard. Mater. 2008, 15, 605.
  9. Zerilli, F. J. J. Phys. Chem. A 2006, 110, 5713.
  10. Hu, A.; Larade, B. Propell. Explos. Pyrot. 2006, 31, 355. https://doi.org/10.1002/prep.200600048
  11. Pravica, M.; Liu, Y.; Robinson, J.; Velisavljevic, N.; Liu, Z. X.; Galley, M. J. Appl. Phys. 2012, 111, 103524. https://doi.org/10.1063/1.4720744
  12. Lewis, J. P.; Sewell, T. D.; Evans, R. B.; Voth, G. A. J. Phys. Chem. B 2000, 104, 1009.
  13. Zhu, W. H.; Xiao, J. J.; Ji, G. F.; Zhao, F.; Xiao, H. M. J. Phys. Chem. B 2007, 111, 12715. https://doi.org/10.1021/jp075056v
  14. Lewis, J. P. Chem. Phys. Lett. 2003, 371, 588. https://doi.org/10.1016/S0009-2614(03)00309-9
  15. Ye, S.; Koshi, M. J. Phys. Chem. B 2006, 110, 18515. https://doi.org/10.1021/jp062815l
  16. Zhu, W. H.; Zhang, X. W.; Wei, T.; Xiao, H. M. J. Mol. Struct. (Theochem) 2009, 900, 84. https://doi.org/10.1016/j.theochem.2008.12.031
  17. Zhu, W. H.; Shi, C. H.; Xiao, H. M. J. Mol. Struct. (Theochem) 2009, 910, 148. https://doi.org/10.1016/j.theochem.2009.06.029
  18. Zhu, W. H.; Xiao, H. M. J. Phys. Chem. B 2009, 113, 10315. https://doi.org/10.1021/jp903982w
  19. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys. Condens. Matter. 2002, 14, 2717. https://doi.org/10.1088/0953-8984/14/11/301
  20. Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. https://doi.org/10.1103/PhysRevB.41.7892
  21. Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. https://doi.org/10.1103/PhysRevB.54.11169
  22. Fletcher, R. Practical Methods of Optimization Vol. 1; Wiley: New York, 1980.
  23. Ceperley, D. M.; Alder, B. J. Phys. Rev. Lett. 1980, 45, 566. https://doi.org/10.1103/PhysRevLett.45.566
  24. Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048. https://doi.org/10.1103/PhysRevB.23.5048
  25. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. https://doi.org/10.1103/PhysRevB.46.6671
  26. Ju, X. H.; Xiao, H. M.; Xia, Q. F. J. Chem. Phys. 2003, 119, 10247. https://doi.org/10.1063/1.1618735
  27. Zhu, W. H.; Xiao, H. M. J. Comput. Chem. 2008, 29, 176. https://doi.org/10.1002/jcc.20682
  28. Xu, X. J.; Zhu, W. H.; Xiao, H. M. J. Phys. Chem. B 2007, 111, 2090. https://doi.org/10.1021/jp066833e
  29. Zhu, W. H.; Xiao, H. M. Struct. Chem. 2010, 21, 657. https://doi.org/10.1007/s11224-010-9596-8
  30. Saha, S.; Sinha, T. P.; Mookerjee, A. Phys. Rev. B 2000, 62, 8828. https://doi.org/10.1103/PhysRevB.62.8828

Cited by

  1. radicals: bimolecular reactions with low barrier during the decomposition of FOX-7 vol.115, pp.23, 2017, https://doi.org/10.1080/00268976.2017.1339917
  2. Thermal decomposition pathways for 1,1-diamino-2,2-dinitroethene (FOX-7) vol.141, pp.13, 2014, https://doi.org/10.1063/1.4896165
  3. Mechanisms and kinetics of initial pyrolysis and combustion reactions of 1,1-diamino-2,2-dinitroethylene from density functional tight-binding molecular dynamics simulations vol.97, pp.11, 2019, https://doi.org/10.1139/cjc-2019-0141