DOI QR코드

DOI QR Code

Preparation and Characterization of MWCNT-g-Poly (Aniline-co-DABSA)/Nafion® Nanocomposite Membranes for Direct Methanol Fuel Cells

  • Abu Sayeed, Md. (Department of Environmental Engineering, Kyungpook National University) ;
  • Kim, Young Ho (Medical Device Development Center) ;
  • Kim, Chorong (Department of Environmental Engineering, Kyungpook National University) ;
  • Park, Younjin (Department of Environmental Engineering, Kyungpook National University) ;
  • Gopalan, A.I. (Department of Chemistry Education, Kyungpook National University) ;
  • Lee, Kwang-Pill (Department of Chemistry Education, Kyungpook National University) ;
  • Choi, Sang-June (Department of Environmental Engineering, Kyungpook National University)
  • Received : 2013.04.16
  • Accepted : 2013.06.11
  • Published : 2013.09.20

Abstract

Multiwalled carbon nanotube (MWCNT)-g-poly (aniline-co-2,5-diaminobenzenesulfonic acid) (DABSA) reinforced Nafion$^{(R)}$ nanocomposite membranes were prepared and characterized for direct methanol fuel cells (DMFCs). The nanocomposite membranes with approximately $90{\mu}m$ thickness were prepared by the water assisted solution casting method. To evaluate the properties of nanocomposite membranes for DMFC applications, the nanocomposite membranes were characterized by methanol and water uptake, thermal stability, and ion exchange capacity (IEC). Furthermore, oxidative stability measurements in terms of the hydrogen peroxide decomposition rate that represent the oxidative stability of the membranes were examined. The methanol uptake values of the nanocomposite membranes were dramatically decreased compared to the cast Nafion$^{(R)}$ membranes. The IEC values of the nanocomposite membranes were increased about 30% compared to the cast Nafion$^{(R)}$ membrane.

Keywords

References

  1. Won, J.; Park, H. H.; Kim, Y. J.; Choi, S. W.; Ha, H. Y.; Oh, I.-H.; Kim, H. S.; Kang, Y. S.; Ihn, K. J. Macromolecules 2003, 36, 3228. https://doi.org/10.1021/ma034014b
  2. Won, J.; Choi, S. W.; Kang, Y. S.; Ha, H. Y.; Oh, I.-H.; Kim, H. S.; Kim, K. T.; Jo, W. H. J. Membr. Sci. 2003, 214, 245. https://doi.org/10.1016/S0376-7388(02)00555-0
  3. Boddeker, K. W.; Peinemann, K.-V.; Nunes, S. P. J. Membr. Sci. 2001, 185, 1. https://doi.org/10.1016/S0376-7388(00)00630-X
  4. Ding, J.; Chuy, C.; Holdcroft, S. Macromolecules 2002, 35, 1348. https://doi.org/10.1021/ma010970m
  5. Kuver, A.; Vielstich, W. J. Power Sources 1998, 74, 211. https://doi.org/10.1016/S0378-7753(98)00065-2
  6. Adjemian, K. T.; Lee, S. J.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B. J. Electrochem. Soc. 2002, 149, A256. https://doi.org/10.1149/1.1445431
  7. Rhee, C. H.; Kim, H. K.; Chang, H.; Lee, J. S. Chem. Mater. 2005, 17, 1691. https://doi.org/10.1021/cm048058q
  8. Kim, Y. H.; Lee, H. K.; Sayeed, MD. A.; Park, Y.; Gopalan, A. I.; Lee, K.-P.; Choi, S.-J. J. Nanoelectron. Optoelectron. 2012, 7, 517. https://doi.org/10.1166/jno.2012.1369
  9. Rosca, I. D.; Watari, F.; Uo, M.; Akasaka, T. Carbon 2005, 43, 3124. https://doi.org/10.1016/j.carbon.2005.06.019
  10. Kim, Y. H.; Lee, H. K.; Park, Y.; Gopalan, A. I.; Lee, K.-P.; Choi, S.-J. J. Nanoelectron. Optoelectron. 2011, 6, 217. https://doi.org/10.1166/jno.2011.1156
  11. Yu, H.; Jin, Y.; Li, Z.; Peng, F.; Wang, H. J. Solid State Chem. 2008, 181, 432. https://doi.org/10.1016/j.jssc.2007.12.017
  12. Alva, K. S.; Marx, K. A.; Kumar, J.; Tripathy, S. K. Macromol. Rapid Commun. 1996, 17, 859. https://doi.org/10.1002/marc.1996.030171203
  13. Lee, K.; Cho, S.; Park, S. H.; Heeger, A. J.; Lee, C.; Lee, S. Nature 2006, 441, 65. https://doi.org/10.1038/nature04705
  14. Lim, J. H.; Mirkin, C. A. Adv. Mater. 2002, 14, 1474. https://doi.org/10.1002/1521-4095(20021016)14:20<1474::AID-ADMA1474>3.0.CO;2-2
  15. Virji, S.; Kaner, R. B.; Weiller, B. H. J. Phys. Chem. B 2006, 110, 22266. https://doi.org/10.1021/jp063166g
  16. Hsu, C.-H.; Liao, H.-Y.; Kuo, P.-L. J. Phys. Chem. C 2010, 114, 7933. https://doi.org/10.1021/jp100328f
  17. Santhosh, P.; Gopalan, A.; Lee, K.-P. J. Catal. 2006, 238, 177. https://doi.org/10.1016/j.jcat.2005.12.014
  18. Zhao, B.; Hui, H.; Yu, A.; Perea, D.; Haddon, R. C.; J. Am. Chem. Soc. 2005, 127, 8197. https://doi.org/10.1021/ja042924i
  19. Lee, K.-P.; Komathi, S.; Nam, N. J.; Gopalan, A. I.; Microchemical J. 2010, 95, 74. https://doi.org/10.1016/j.microc.2009.10.008
  20. Wen, T.-C.; Huang, L.-M.; Gopalan, A. Electrochim. Acta 2001, 46, 2463. https://doi.org/10.1016/S0013-4686(01)00454-6
  21. Xing, D.; Zhang, H.; Wang, L.; Zhai, Y.; Yi, B. J. Membr. Sci. 2007, 296, 9. https://doi.org/10.1016/j.memsci.2007.03.005
  22. Silverstein, R. M.; Webster, F. X. Spectrometric Identification of Organic Compounds, 6th ed.; John Wiley & Sons: 1998.
  23. Williams, D. H.; Fleming, I. Spectroscopic Methods in Organic Chemistry, 4th ed.;, McGraw Hill: 1987.
  24. Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 4th ed.; New York, John Wiley and Sons: 1981.
  25. Buchi, F.; Gupta, B.; Haas, O.; Scherer, G. Electrochim. Acta 1995, 40, 345. https://doi.org/10.1016/0013-4686(94)00274-5
  26. Gao, Q.; Pintauro, P.; Tang, H.; O'Connor, S. J. Membr. Sci. 1999, 154, 175. https://doi.org/10.1016/S0376-7388(98)00282-8
  27. Liu, W.; Zuckerbrod, D. J. Electrochem. Soc. 2005, 152, A1165. https://doi.org/10.1149/1.1904988
  28. Wight, A. P.; Davis, M. E. Chem. Rev. 2002, 102, 3589. https://doi.org/10.1021/cr010334m