DOI QR코드

DOI QR Code

Analysis of the Structure and Stability of Erythropoietin by pH and Temperature Changes using Various LC/MS

  • Chang, Seong-Hun (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Hyun-Jung (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Chan-Wha (School of Life Sciences and Biotechnology, Korea University)
  • Received : 2013.02.07
  • Accepted : 2013.06.14
  • Published : 2013.09.20

Abstract

The purpose of stability testing is to provide evidence about how the quality of a drug varies with time under the influence of a variety of environmental factors. In this study, erythropoietin (EPO) was analyzed under different pH (pH 3 and pH 9) and temperature ($25^{\circ}C$ and $40^{\circ}C$) conditions according to current Good Manufacturing Practice (cGMP) and International Conference on Harmonisation (ICH) guidelines. The molecular weight difference between intact EPO and deglycosylated EPO was determined by SDS-PAGE, and aggregated forms of EPO under thermal stress and high-pH conditions were investigated by size exclusion chromatography. High pH and high temperature induced increases in dimer and high molecular weight aggregate forms of EPO. UPLC-ESI-TOF-MS was applied to analyze the changed modification sites on EPO. Further, normal-phase high-performance liquid chromatography was performed to identify proposed glycan structures and high pH anion exchange chromatography was carried out to investigate any change in carbohydrate composition. The results demonstrated that there were no changes in modification sites or the glycan structure under severe conditions; however, the number of dimers and aggregates increased at $40^{\circ}C$ and pH 9, respectively.

Keywords

References

  1. Dwek, A. Chem Rev 1996, 96(2), 683-720. https://doi.org/10.1021/cr940283b
  2. Fukumoto, H.; Matsui, Y.; Obinata, M. Development 1989, 105(1), 109-114.
  3. Seo, J.; Lee, K. J. Journal of Biochemistry and Molecular Biology 2004, 37(1), 35-44. https://doi.org/10.5483/BMBRep.2004.37.1.035
  4. DePaolis, A. M.; Advani, J. V.; Sharma, B. G. J. Pharm. Sci. 1995, 84(11), 1280-1284. https://doi.org/10.1002/jps.2600841105
  5. Sinclair, A. M.; Elliott, S. J. Pharm. Sci. 2005, 94(8), 1626-1635. https://doi.org/10.1002/jps.20319
  6. Harazono, A.; Kawasaki, N.; Itoh, S.; Hashii, N.; Ishii-Watabe, A.; Kawanishi, T.; Hayakawa, T. Analytical Biochemistry 2006, 348(2), 259-268. https://doi.org/10.1016/j.ab.2005.10.036
  7. Broudy, V. C.; Tait, J. F.; Powell, J. S. Archives of Biochemistry and Biophysics 1988, 265(2), 329-336. https://doi.org/10.1016/0003-9861(88)90135-X
  8. Parodi, A. J. Biochim. Biophys Acta 1999, 1426(2), 287-295. https://doi.org/10.1016/S0304-4165(98)00130-5
  9. Wang, W. Int. J. Pharm. 1999, 185(2), 129-188. https://doi.org/10.1016/S0378-5173(99)00152-0
  10. Guan, F., et al. Anal. Chem. 2007, 79(12), 4627-435. https://doi.org/10.1021/ac070135o
  11. Kuster, B.; Krogh, T. N.; Mortz, E.; Harvey, D. J. Proteomics 2001, 1(2), 350-361. https://doi.org/10.1002/1615-9861(200102)1:2<350::AID-PROT350>3.0.CO;2-7
  12. Rudd, P. M.; Colominas, C.; Royle, L.; Murphy, N.; Hart, E.; Merry, A. H.; Hebestreit, H. F.; Dwek, R. A. Proteomics 2001, 1(2), 285-294. https://doi.org/10.1002/1615-9861(200102)1:2<285::AID-PROT285>3.0.CO;2-G
  13. Gunturi, S. R.; Ghobrial, I.; Sharma, B. Journal of Pharmaceutical and Biomedical Analysis 2007, 43(1), 213-221. https://doi.org/10.1016/j.jpba.2006.06.006
  14. Harvey, D. J. Expert Review of Proteomics 2005, 2(1), 87-101. https://doi.org/10.1586/14789450.2.1.87
  15. Carr, S. A.; Annan, R. S.; Huddleston, M. J. Methods in Enzymology 2005, 405, 82-115. https://doi.org/10.1016/S0076-6879(05)05005-6
  16. Neususs, C.; Demelbauer, U.; Pelzing, M. Electrophoresis 2005, 26(7-8), 1442-1450. https://doi.org/10.1002/elps.200410269
  17. Guile, G. R.; Rudd, P. M.; Wing, D. R.; Prime, S. B.; Dwek, R. A. Analytical Biochemistry 1996, 240(2), 210-226. https://doi.org/10.1006/abio.1996.0351
  18. Kuster, B.; Wheeler, S. F.; Hunter, A. P.; Dwek, R. A.; Harvey, D. J. Analytical Biochemistry 1997, 250(1), 82-101. https://doi.org/10.1006/abio.1997.2199
  19. Anumula, K. R. Analytical Biochemistry 2006, 350(1), 1-23. https://doi.org/10.1016/j.ab.2005.09.037

Cited by

  1. Structural Identification of Modified Amino Acids on the Interface between EPO and Its Receptor from EPO BRP, Human Recombinant Erythropoietin by LC/MS Analysis vol.37, pp.11, 2013, https://doi.org/10.14348/molcells.2014.0214
  2. Development of erythropoietin receptor-targeted drug delivery system against breast cancer using tamoxifen-loaded nanostructured lipid carriers vol.11, pp.None, 2017, https://doi.org/10.2147/dddt.s123939
  3. Evaluation of the combined effects of pegylation and glycosylation on the stability of erythropoietin using a stability-indicating SE-HPLC vol.50, pp.None, 2013, https://doi.org/10.1016/j.biologicals.2017.08.012
  4. Adsorption of recombinant human erythropoietin and protein impurities on a multimodal chromatography membrane vol.73, pp.7, 2013, https://doi.org/10.1007/s11696-019-00743-8
  5. Physical Characteristics of Erythropoetin Encapsulated into Alginate Polymer Using Aerosolization Technique vol.1445, pp.None, 2020, https://doi.org/10.1088/1742-6596/1445/1/012012