DOI QR코드

DOI QR Code

Synthesis of Thermally Stable Mesoporous Alumina by using Bayberry Tannin as Template in Aqueous System

  • Liu, Jing (Department of Biomass Chemistry and Engineering, Sichuan University) ;
  • Huang, Fuming (Department of Biomass Chemistry and Engineering, Sichuan University) ;
  • Liao, Xuepin (Department of Biomass Chemistry and Engineering, Sichuan University) ;
  • Shi, Bi (Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University)
  • Received : 2013.03.25
  • Accepted : 2013.06.11
  • Published : 2013.09.20

Abstract

Mesoporous alumina was synthesized using bayberry tannin (BT) as template. This novel synthesis strategy was based on a precipitation method associated with aluminum nitrate as the source of aluminum in an aqueous system. $N_2$ adsorption/desorption, XRD, SEM and TEM were used to characterize the as-prepared mesoporous alumina. The results showed that the mesoporous alumina possessed crystalline pore wall, high specific surface area, narrow pore distribution and excellent thermal stability. Moreover, the surface area and pore size of the mesoporous alumina can be tuned by changing the experimental parameters. Further, the mesoporous alumina was investigated as the support of palladium catalyst ($Pd-Al_2O_3{^*}$) for the hydrogenation of propenyl, styrene and linoleic acid. For comparison, the reference catalyst ($Pd-Al_2O_3$) prepared without barberry tannin was also employed for the catalytic hydrogenation. The experimental results showed that $Pd-Al_2O_3{^*}$ exhibited the superior catalytic performance than $Pd-Al_2O_3$ for all the investigated substrates, especially for the hydrogenation of linoleic acid with larger molecular.

Keywords

References

  1. Boissiere, C.; Nicole, L.; Gervais, C.; Babonneau, F.; Antonietti, M.; Amenitsch, H.; Sanchez, C.; Grosso, D. Chem. Mater. 2006, 18, 5238. https://doi.org/10.1021/cm061489j
  2. Khalil, K. M. S. Appl. Surf. Sci. 2008, 255, 2874. https://doi.org/10.1016/j.apsusc.2008.08.091
  3. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477. https://doi.org/10.1039/b802426j
  4. Huh, S.; Kim, S. J. Bull. Korean Chem. Soc. 2008, 29, 913. https://doi.org/10.5012/bkcs.2008.29.5.913
  5. Liu, X. F.; Oh, M.; Lah, M. S. Inorg. Chem. 2011, 50, 5044. https://doi.org/10.1021/ic200328q
  6. Motiei, L.; Kaminker, R.; Sassi, M.; van der Boom, M. E. J. Am. Chem. Soc. 2011, 133, 14264. https://doi.org/10.1021/ja206179a
  7. Xu, B. J.; Xiao, T. C.; Yan, Z. F.; Sun, X.; Sloan, J.; Gonzalez-Cortes, S. L.; Alshahrani, F.; Green, M. L. H. Micropor. Mesopor. Mater. 2006, 91, 293. https://doi.org/10.1016/j.micromeso.2005.12.007
  8. Yu, M. J.; Li, X.; Ahn, W. S. Micropor. Mesopor. Mater. 2008, 113, 197. https://doi.org/10.1016/j.micromeso.2007.11.020
  9. Lee, H. C.; Kim, H. J.; Rhee, C. H.; Lee, K. H.; Lee, J. S.; Chung, S. H. Micropor. Mesopor. Mater. 2005, 79, 61. https://doi.org/10.1016/j.micromeso.2004.10.021
  10. Liu, X. H.; Wei, Y.; Jin, D. L.; Shih, W. H. Mater. Lett. 2000, 42, 143. https://doi.org/10.1016/S0167-577X(99)00173-1
  11. Bai, P.; Xing, W.; Zhang, Z. X.; Yan, Z. F. Mater. Lett. 2005, 59, 3128. https://doi.org/10.1016/j.matlet.2005.05.033
  12. Cejka, J. J. Appl. Catal., A 2003, 254, 327. https://doi.org/10.1016/S0926-860X(03)00478-2
  13. Vazquez, G.; Gonzalez-Alvarez, J.; Lopez-Suevos, F.; Antorrena, G. Bioresour. Technol. 2003, 87, 349. https://doi.org/10.1016/S0960-8524(02)00230-4
  14. Shi, B.; Di, Y. Plant Polyphenol; Science Press: Beijing, China, 2000; p 138.
  15. Yamguchi, H.; Higasida, R.; Higuchi, M.; Sakata, N. J. Appl. Polym. Sci. 1992, 45, 1463. https://doi.org/10.1002/app.1992.070450815
  16. Sengil, I. A.; Ozacar, M. J. Hazard. Mater. 2009, 166, 1488. https://doi.org/10.1016/j.jhazmat.2008.12.071
  17. Garro Galvez, J. M.; Riedl, B.; Conner, A. H. Holzforschung 1997, 51, 235. https://doi.org/10.1515/hfsg.1997.51.3.235
  18. Kacer, P.; Late, L.; Kuzma, M.; Cerveny, L. J. Mol. Catal. A: Chem. 2000, 159, 365. https://doi.org/10.1016/S1381-1169(00)00224-7
  19. Sangwichien, C.; Aranovich, G. L.; Donohue, M. D. Colloids Surf., A 2002, 206, 313. https://doi.org/10.1016/S0927-7757(02)00048-1
  20. Chaikittisilp, W.; Kim, H. J.; Jones, C. W. Energy Fuels 2011, 25, 5528. https://doi.org/10.1021/ef201224v
  21. Zhang, Z. R.; Pinnavaia, T. J. J. Am. Chem. Soc. 2002, 124, 12294. https://doi.org/10.1021/ja0208299
  22. Aguado, J.; Escola, J. M.; Castro, M. C. Micropor. Mesopor. Mater. 2010, 128, 48. https://doi.org/10.1016/j.micromeso.2009.08.002
  23. Morajkar, P. P.; Fernandes, J. B. Catal. Commun. 2010, 11, 414. https://doi.org/10.1016/j.catcom.2009.11.011
  24. Kleitz, F.; Kim, T. W.; Ryoo, R. Bull. Korean Chem. Soc. 2005, 26, 1653. https://doi.org/10.5012/bkcs.2005.26.11.1653
  25. Cabrera, S.; Haskouri, J. E.; Alamo, J.; Beltran, A.; Beltran, D.; Mendioroz, S.; Marcos, M. D.; Amoros, P. Adv. Mater. 1999, 11, 379. https://doi.org/10.1002/(SICI)1521-4095(199903)11:5<379::AID-ADMA379>3.0.CO;2-6
  26. Wang, Z.; Li, Z. Z.; He, X. N. Bio. Chem. Eng. 2006, 40, 31.
  27. Soler-Illia, G. J. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. J. Chem. Rev. 2002, 102, 4093. https://doi.org/10.1021/cr0200062
  28. Maki-Arvela, P.; Kuusisto, J.; Sevilla, E. M.; Simakova, I.; Mikkola, J. P.; Myllyoja, J.; Salmi, T.; Murzin, D. Y. Appl. Catal., A 2008, 345, 201. https://doi.org/10.1016/j.apcata.2008.04.042
  29. Belkacemi, K.; Boulmerka, A.; Hamoudi, S.; Arul, J. Int. J. Chem. React. Eng. 2005, 3, 59.

Cited by

  1. Preparation and characterization of Ca-modified Co/Al2O3 and its catalytic application in the one-pot synthesis of 4H-pyrans vol.46, pp.6, 2013, https://doi.org/10.1007/s11164-020-04139-2
  2. Valorisation of Fruits, their Juices and Residues into Valuable (Nano)materials for Applications in Chemical Catalysis and Environment vol.20, pp.11, 2013, https://doi.org/10.1002/tcr.202000078
  3. Synthesis of mesoporous alumina: an impact of surface chemistry on release behavior vol.38, pp.8, 2013, https://doi.org/10.1080/02726351.2019.1666947