DOI QR코드

DOI QR Code

Agricultural Soil Carbon Management Considering Water Environment

수질 환경을 고려한 농경지 토양 탄소 관리 방안

  • Lee, Kyoungsook (Dept. of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Yoon, Kwangsik (Dept. of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Choi, Dongho (Dept. of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Jung, Jaewoon (Yeongsan River Environment Research Center) ;
  • Choi, Woojung (Dept. of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Lim, Sangsun (Dept. of Rural & Bio-systems Engineering, Chonnam National University)
  • 이경숙 (전남대학교 지역.바이오시스템공학과) ;
  • 윤광식 (전남대학교 지역.바이오시스템공학과) ;
  • 최동호 (전남대학교 지역.바이오시스템공학과) ;
  • 정재운 (국립환경과학원 영산강물환경연구소) ;
  • 최우정 (전남대학교 지역.바이오시스템공학과) ;
  • 임상선 (전남대학교 지역.바이오시스템공학과)
  • Received : 2012.10.10
  • Accepted : 2012.12.10
  • Published : 2013.02.28

Abstract

Carbon sequestration on soil is one of the counter measurements against climate change in agricultural sector. Increasing incorporation of organic fertilizer would increase soil organic carbon (SOC) but it could bring high potential of nutrient losses which would result in water quality degradation. In this paper, literature review on soil organic carbon behavior according to agricultural management is presented. The results of field experiment to identify the effect of organic and commercial fertilizer applications on SOC and runoff water quality were also presented. Field experiment confirmed increased SOC and nutrient concentrations in runoff water as application rate of organic fertilizer increase. The potential use of simulation model to develop best agricultural management practice considering carbon sequestration and water quality conservation at the same time is discussed and monitoring and modeling strategies are also suggested to achieve the goal.

Keywords

References

  1. 강동환, 김성수, 권병혁, 김일규, 2008, 고흥만 인공습지의 토양 유기탄소와 이산화탄소 변동관측, 수산해양교육연구지, 20(1), 58-67.
  2. 김건엽, 서상욱, 고병구, 정현철, 노기안, 심교문, 2008, 보리-고추와 보리-콩 작부체계에서 이산화 탄소수지 평가, 한국토양비료학회지, 41(6), 408-414.
  3. 김진수, 이종진, 오승영, 2000, 시비조건에 따른 단위 논에서의 영양염류의 농도 특성, 한국관개배수지, 7(1), 47-56.
  4. 노기안, 김필주, 강기경, 안윤수, 윤성호, 1999, 유기물 시용에 의한 벼논에서의 양분 유출경감, 한국환경농학회지 18(3), 196-203.
  5. 오승영, 김진수, 김규성, 김선종, 윤춘경, 2002, 관개기 대구획 광역논에서의 오염부하 원단위, 한국농공학회지, 44(2), 136-147.
  6. 윤춘경, 권숙국, 정일민, 권태영, 1999, 오수처리수관개 벼재배를 통한 농업용수 수질기준의 검토, 한국농공학회지, 41(2), 44-54.
  7. 전지홍, 윤춘경, 황하선, 윤광식, 2003, 논에서의 오염부하 예측을 위한 범용모형 개발, 한국육수학회지, 36(3), 344-355.
  8. 정기열, 이창훈, 이재생, 고지연, 최영대, 윤을수, 2008, 벼-보리 이모작 작부체계가 토양 탄소 함량에 미치는 영향, 한국환경농학회 학술발표논문집, 1, 130-130.
  9. 정원교, 김선관, 2007, 우리나라 논토양의 토양 유기탄소 변동 특성, 한국토양비료학회지, 40(1), 36-42.
  10. 정원교, 김선관, 연병열, 노재승, 2007, 동일 비료장기연용 논에서 토양유기탄소의 변동, 한국토양비료학회지, 40(4), 292-297.
  11. 최용훈, 원철희, 서지연, 신민환, 양희정, 임경재, 최중대, 2009, 평지밭과 고랭지밭의 비점오염에 대한 분석과 비교, 수질보전 한국물환경학회지, 25(5), 682-688.
  12. 최진규, 구자웅, 손재권, 윤광식, 조재영, 2001, 마령지구 필지 논으로부터 영농기 영양물질수지와 유출부하량, 한국농공학회지, 43(5), 153-162.
  13. Agbenin, J.O., Goladi, J.T., 1997, Carbon, nitrogen and phosphorus dynamics under continuous cultivation as influenced by farmyard manure and inorganic fertilizers in the savanna of northern Nigeria, Agriculture, Ecosystems and Environment, 63, 17-24. https://doi.org/10.1016/S0167-8809(96)01123-1
  14. Al-Kaisi, M.M., Yin, X., 2005, Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotation, J. Environ. Qual., 34, 437-445. https://doi.org/10.2134/jeq2005.0437
  15. Apezteguia, R, Izaurralde, C., Sereno, R., 2009, Simulation study of soil organic matter dynamics as affected by land use and agricultural practices in semiarid Cordoba, Argentina, Soil & Tillage Research, 102, 101-108. https://doi.org/10.1016/j.still.2008.07.016
  16. Amos, B., Arkebauer, T.J., Doran, J.W., 2005, Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem, Soil Sci. Soc. Am. J., 69, 387-395. https://doi.org/10.2136/sssaj2005.0387
  17. Bajracharya, R.M., Lal, R., Kimble, J.M., 2000, Diurnal and seasonal $CO_2$-C flux from soil as related to erosion phases in central Ohio, Soil Sci. Soc. Am. J., 64, 286-293. https://doi.org/10.2136/sssaj2000.641286x
  18. Beare, M.H., Cabrera, M.L., Hendrix, P.F., Coleman, D.C., 1994, Aggregate- protected and unprotected organic matter pools in conventional- and no-tillage soils, Soil Sci. Soc. Am. J., 58, 787-795. https://doi.org/10.2136/sssaj1994.03615995005800030021x
  19. Bernardos, J.N., Viglizzo, E.F., Jouvet, V., LeLrtora, F.A., Pordomingo, A.J., Cid, F.D., 2001, The use of EPIC model to study the agroecological change during 93 years of farming transformation in the Argentine pampas, Agricultural Systems, 69, 215-234. https://doi.org/10.1016/S0308-521X(01)00027-0
  20. Brown, R.A., Rosenberg, N.J., 1999, Climate change impacts on the potential productivity of corn and winter wheat in their primary United States growing regions, Climatic Change, 41(1), 73-107. https://doi.org/10.1023/A:1005449132633
  21. Cai, Z., Sawamoto, T., Li, C., Kang, G., Boonjawat, J., Mosier, A., Wassmann, R., Tsuruta, H., 2003, Field validation of the DNDC model for greenhouse gas emission in East Asian cropping systems, Global Biogeochem. Cycles, 17(4), 1-10.
  22. Calderon, F.J., Jackson, L., 2002, Rototillage, disking, and subsequent irrigation: Effects on soil nitrogen dynamics, microbial biomass, and carbon dioxide efflux, J. Environ. Qual., 31, 752-758. https://doi.org/10.2134/jeq2002.0752
  23. Cambardella C.A., Doran, H.W.Y., 1996, Assessing soil quality by testing organic matter, In Jerry M. Bogham et al. (ed.) Soil organic matter: Analysis and interpretation, SSSA Special publication, 46, 41-50.
  24. Chang, C., Sommerfeldt, T.G., Entz, T., 1991, Soil chemistry after eleven annual applications of cattle feedlot manure, J. Env. Qual., 20, 475-480.
  25. Chung, S.W., Gassman, P.W., Gu, R., Kanwar, R.S., 2002, Evaluation of EPIC for assessing tile flow and nitrogen losses for alternative agricultural management systems, Trans. ASAE, 45(4), 1135-1146.
  26. Chung, S.W., Gassman, P.W., Huggins, D.R., Randall, G.W., 2001, Evaluation of EPIC for tile flow and tile nitrate losses from three Minnesota cropping systems, J. Environ. Qual., 30(3), 822-830. https://doi.org/10.2134/jeq2001.303822x
  27. Curtin, D., Wang, H., Selles, F., McConkey, B.G., Campbell, C.A., 2000, Tillage effects on carbon fluxes in continuous wheat and fallow-wheat rotations, Soil Sci. Soc. Am. J., 64, 2080-2086. https://doi.org/10.2136/sssaj2000.6462080x
  28. Duxbury, J.M., 1994, The significance of agricultural sources of greenhouse gases, Fert. Res., 38, 151-163. https://doi.org/10.1007/BF00748775
  29. Duxbury, J.M., 1995, The significance of agricultural greenhouse gas emissions from soil of tropical agroecosystems, In R. Lal (ed.) Soil management and greenhouse effect, Lewis Publ., Boca Raton, FL., 279-291.
  30. Edwards, D.R., Benson, V.W., Williams, J.R., Daniel, T.C., Lemunyon, J., Gilbert, R.G., 1994, Use of the EPIC model to predict runoff transport of surfaceapplied inorganic fertilizer and poultry manure constituents, Trans. ASAE, 37(2), 403-409. https://doi.org/10.13031/2013.28091
  31. Favis-Mortlock, D.T., Evans, R., Boardman, J., Harris, T.M., 1991, Climate change, winter wheat yield and soil erosion on the English South Downs, Agric. Syst., 37, 415-433. https://doi.org/10.1016/0308-521X(91)90062-F
  32. Fortin, M.C., Rochette, P., Pattey, E., 1996, Soil carbon dioxide fluxes from conventional and no-tillage small-grain cropping system, Soil Sci. Soc. Am. J., 60, 1541-1547. https://doi.org/10.2136/sssaj1996.03615995006000050036x
  33. Franzluebbers, A.J., J.A. Stuedemann, S.R. Wilkinson, 2001, Bermudagrass management in the Southern Piedmont USA. I. Soil and surface residue carbon and sulfur, Soil Sci. Soc. Am. J. 65, 834-841. https://doi.org/10.2136/sssaj2001.653834x
  34. Frenzluebbers, A.J. Steiner, J.L., 2002, Climatic influences on soil organic carbon storage with no tillage, In R. Lal (ed.) Agricultural Practices and Policies for Crbon Squestration in Soil. Boca Raton: CRC Press, 71-86.
  35. Govi, M., Francioso, O., Ciavatta, C., Sequi, P., 1992, Influence of long-term residue and fertilizer applications on soil humic substances: A case study by electrofocusing, Soil Science, 154, 8-13. https://doi.org/10.1097/00010694-199207000-00002
  36. Grant, R.F., 1997, Changes in soil organic matter under different tillage and rotation: Mathematical modeling in ecosys, Soil Sci. Soc. Am. J., 61, 1159-1175. https://doi.org/10.2136/sssaj1997.03615995006100040023x
  37. Guo, Y., Gong, P., Amundson, R., Yu., Q., 2006, Analysis of factors controlling soil carbon in the conterminous United States, Soil Sci. Soc. Am. J., 70, 601-612. https://doi.org/10.2136/sssaj2005.0163
  38. Gupta, A.P., Narwal, R.P., Antil, R.S., Dev, S., 1992, Sustaining soil fertility with organic- C, N, P, and K by using farmyard manure and fertilizer-N in a semiarid zone: A long-term study, Arid Soil Research and Rehabilitation, 6, 243-251. https://doi.org/10.1080/15324989209381318
  39. Hooker, B.A., Morris, T.F., Peters, R., Cardon, Z.G., 2005, Long term effects of tillage and corn stalk return on soil carbon dynamics, Soil Sci. Soc. Am. J., 69, 188-196. https://doi.org/10.2136/sssaj2005.0188
  40. Izaurralde, R.C., Williams, J.R., McGill, W.B., Rosenberg, N.J., Quiroga Jakas, M.C., 2006, Simulating soil C dynamics with EPIC: Model description and testing against long-term data, Ecological Modelling, 192, 362-384. https://doi.org/10.1016/j.ecolmodel.2005.07.010
  41. Jackson, L.E., Calderon, F.J., Steenwerth, K.L., Scow, K.M., Rolston, D.E., 2003, Responses of soil microbial processes and community structure to tillage events and implications for soil quality, Geoderma, 114, 305-317. https://doi.org/10.1016/S0016-7061(03)00046-6
  42. Jastrow, J.D., Boulton, T.W., Miller, R.M., 1996, Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance, Soil Sci. Soc. Am. J., 60, 801-807. https://doi.org/10.2136/sssaj1996.03615995006000030017x
  43. Jung, W.K. Y.H. Kim, 2006, Soil organic carbon determination for calcareous soils, Korea J. Soil Sci. Fert., 39, 396-402.
  44. Kalbitz, K., Solinger, S., Park J. H., Michalzik, B., Matzner, E., 2000, Control on the dynamics of dissolved organic matter in soils: A review, Soil Science, 165(4), 227-304.
  45. Kapkiyai, J.J., Karanja, N.K., Qureshi, J.N., Smithson, P.C., Womer, P.L., 1999, Soil organic matter and nutrient dynamics in a Kenyan nitisol under long-term fertilizer and organic input management, Soil Biology and Biochemistry, 31(13), 1773-1782. https://doi.org/10.1016/S0038-0717(99)00088-7
  46. Kingery, W.L., Wood, C.W., Delaney, D.P., Williams, J.C., Mullins, G.L., 1994, Impact of long-term land application of broiler litter on environmentally related soil properties, J. Environ. Qual., 23, 139-147.
  47. Lal, R., 2004, Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623-1626. https://doi.org/10.1126/science.1097396
  48. Lal, R., Kimble, J.M., 1997, Conservation tillage for carbon sequestration, Nutr. Cycling Agroecosyst., 49, 243-253. https://doi.org/10.1023/A:1009794514742
  49. Lal, R., Kimble, J., Follett, R.F., 1997, Pedospheric processes and the carbon cycle, In Rattan Lal et al. (ed) Soil process and the carbon cycle. CRC Press. Boca Raton, FL, USA, 1-8.
  50. Lee, K.D., Lee, K.B., Gil, G.H., Song, I.H., Kang, J.G., Hwang, S.W., 2011, Nitrogen and phosphorus content changes in paddy soil and water as affected by organic fertilizer application, Korean J. Environ. Agric. 30(1), 1-8. https://doi.org/10.5338/KJEA.2011.30.1.1
  51. Li, C., Frolking, S., Harriss, R., 1994, Modeling carbon biogeochemistry in agricultural soils, Global Biogeochem. Cycles 8(3), 237-254. https://doi.org/10.1029/94GB00767
  52. Li, C., Mosier, A., Wassmann, R., Cai, Z., Zheng, X., Huang, Y.,Tsuruta, H., Boonjawat, J., Lantin, R., 2004, Modeling greenhousegas emissions from ricebased production systems: Sensitivity and upscaling, Global Biogeochem. Cycles 18, 1-19.
  53. Norbert Billen, Clara Roder, Thomas Gaiser, Karl Stahr, 2009, Carbon sequestration in soils of SW-Germany as affected by agricultural management - calibration of the EPIC model for regional simulations, Ecological modeling 220, 71-80. https://doi.org/10.1016/j.ecolmodel.2008.08.015
  54. Parkin, T.B., Kaspar, T.C., 2003, Temperature controls on diurnal carbon dioxide flux: Implications for estimating soil carbon loss, Soil Sci. Soc Am. J. 67, 1763-1772. https://doi.org/10.2136/sssaj2003.1763
  55. Pathak, H., Li, C.S., Wassmann, R., 2005, Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model, Biogeosciences 2, 113-123. https://doi.org/10.5194/bg-2-113-2005
  56. Phillips, D.L., P.D. Hardin, V.W. Benson, J.V. Baglio, 1993, Nonpoint source pollution impacts of alternative agricultural management practices in Illinois: A simulation study, J. Soil Water Cons. 48(5), 449-457
  57. Pierson, S.T., Cabrera, M.L., Evanylo, G.K., Schroeder, P.D., Radcliffe, D.E., Kuykendall, H.A., Benson, V.W., Williams, J.R., Hoveland, C.S., McCann, M.A., 2001, Phosphorus losses from grasslands fertilized with broiler litter: EPIC simulations, J. Environ. Qual., 30, 1790-1795. https://doi.org/10.2134/jeq2001.3051790x
  58. Potter, K.N., Williams, J.R., 1994, Predicting daily mean temperatures in the EPIC simulation model, Agron. J., 86(6), 1006-1011. https://doi.org/10.2134/agronj1994.00021962008600060014x
  59. Rinaldi, M., 2001, Application of EPIC model for irrigation scheduling of sunflower in southern Italy, Agric. Water Manage. 49, 185-196. https://doi.org/10.1016/S0378-3774(00)00148-7
  60. Roberts, W.P., Chan, K.Y. 1990, Tillage-induced increases in carbon dioxide loss from soil, Soil Tillage Res., 17, 143-151. https://doi.org/10.1016/0167-1987(90)90012-3
  61. Rochette, P., Gregorich, E.G., 1998, Dynamics of soil microbial biomass C, soluble organic C, and $CO_2$ evolution after three years of manure application, Can. J. Soil Sci., 78, 283-290. https://doi.org/10.4141/S97-066
  62. Rochette, P., Flanagan, L.B., 1997, Quantifying rhizosphere respiration in a corn crop under field conditions, Soil Sci. Soc. Am. J., 61, 466-474. https://doi.org/10.2136/sssaj1997.03615995006100020014x
  63. Roloff, G., de Jong, R., Nolin, M.C., 1998, Crop yield, soil temperature and sensitivity of EPIC under central-eastern Canadian conditions, Can. J. Plant Sci., 78(3), 431-439.
  64. Sainju, U.M., Lenssen, A., Caesar-Tonthat, T., Waddell, J., 2006, Tillage and crop rotation effects on dryland soil and residue carbon and nitrogen, Soil Sci. Soc. Am. J., 70, 668-678. https://doi.org/10.2136/sssaj2005.0089
  65. Shin, C.W., Kim, J.J., Yoon, J.H., 1988, Studies on the characteristics of phosphorus in the upland soil, 1. Composition of accumulated phosphorus forms and available phosphorus, J. Korean Soc. Soil Sci. Fert., 21, 21-29.
  66. Smith, W.N., Grant, B., Desjardins, R.L., Lemke, R., Li, C., 2004, Estimates of the inter annual variations of $N_2O$ emissions from agricultural soils in Canada, Nutrient Cycling in Agroecosystems, 68(1), 37-45. https://doi.org/10.1023/B:FRES.0000012230.40684.c2
  67. Sommerfeldt, T.G., Chang, C., Entz, T., 1988, Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio, Soil Sci. Soc. Am. J., 52, 1668-1672. https://doi.org/10.2136/sssaj1988.03615995005200060030x
  68. Van Gestel, B.P., Merkx, M.R., Vlassak, K., 1993, Microbial biomass responses to soil drying and wetting: Th e fast- and slow-growing microorganisms in soils from different climates, Soil Biol. Biochem., 25, 109-123. https://doi.org/10.1016/0038-0717(93)90249-B
  69. Wall, G.W., Garcia, R.L., Kimball, B.A., Hunsaker, D.J., Pinter Jr., P.J., Long, S.P., Osborne, C.P., Hendrix, D.L., Wechsung, F., Wechsung, G., Leavitt, S.W., LaMorte, R.L., Idso, S.B., 2006, Interactive effects of elevated carbon dioxide and drought on wheat, Agron. J., 98, 354-381. https://doi.org/10.2134/agronj2004.0089
  70. Weil, R.R., Magdoff, F., 2004, Significance of soil organic matter to soil quality and health, In F. Mafdoff and R. R. Weil (ed.), Soil organic matter in sustainable agriculture, CRC Press, Boca Raton, FL, USA, 1-43.
  71. Williams, J.R., Jones, C.A., Dyke, P.T., 1984, A modeling approach to determining the relationships between erosion and soil productivity, Transactions of the ASAE, 27, 129-144. https://doi.org/10.13031/2013.32748
  72. Wood, B.H., Wood, C.W., Yoo, K.H., Yoon, K.S., Delany, D.P., 1999, Seasonal surface runoff losses of nutrients and metals from soils fertilized with broiler litter and commercial fertilizer, J. Environ. Qual. 28(4), 1210-1218.
  73. Xu-Ri, Wang, M., Wang, Y., 2003, Using a modified DNDC model to estimate $N_2O$ fluxes from semi-arid grassland in China, Soil Biology and Biochemistry, 35, 615-620. https://doi.org/10.1016/S0038-0717(03)00009-9
  74. Zhang, F., Li, C., wang, Z., Wu, H., 2006, Modeling impacts of management alternatives on soil carbon storage of farmland in Northwest China, Biogeosciences, 3, 451-466. https://doi.org/10.5194/bg-3-451-2006

Cited by

  1. 한국 농업의 에머지 평가 vol.26, pp.9, 2013, https://doi.org/10.5322/jesi.2017.26.9.1087
  2. 밭토양 조건에서 질소함량별 유기자원의 질소 무기화율 추정 vol.38, pp.4, 2013, https://doi.org/10.5338/kjea.2019.38.4.35