Acknowledgement
Supported by : National Natural Science Foundation of China
References
- W. C. Allee, Animal Aggregations, a Study in General Sociology, The University of Chicago Press, Chicago, IL., 1931.
- W. C. Allee, The Social Life of Animals, Norton, New York, 1938.
- W. C. Allee, The Social Life of Animals, Revised Edition, Beacon Press, Boston, MA, 1958.
- R. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Math. Soviet. 1 (1981), 373-388.
- R. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigen-values, Selecta Math. Soviet. 1 (1981), 389-421.
- C. W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources, 2nd edn. John Wiley & Sons Inc., New York, 1990.
- A. Deredec and F. Courchamp, Extinction thresholds in host-parasite dynamics, Ann. Zool. Fenn. 40 (2003), 115-130.
- C. W. Fowler and J. D. Baker, A review of animal population dynamics at extremely reduced population levels, Rep. Int. Whaling Comm. 41 (1991), 545-554.
- A. Kent, C. P. Doncaster, and T. Sluckin, Consequences for predators of rescue and Allee effects on prey, Ecol. Model. 162 (2003), 233-245. https://doi.org/10.1016/S0304-3800(02)00343-5
- Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol. 36 (1998), no. 4, 389-406. https://doi.org/10.1007/s002850050105
- A. J. Lotka, Elements of Physical Biology, Williams & Wilkins, Baltimore, 1926.
- L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1996.
- G. D. Ruxton, W. S. C. Gurney, and A. M. de Roos, Interference and generation cycles, Theoret. Population Biol. 42 (1992), 235-253. https://doi.org/10.1016/0040-5809(92)90014-K
- S. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theo. Pop. Biol. 64 (2003), no. 2, 201-209. https://doi.org/10.1016/S0040-5809(03)00072-8
- P. A. Stephens and W. J. Sutherland, Consequences of the Allee effects for behaviour, ecology and conservation, Trends Ecol. Evol. 14 (1999), no. 10, 401-405. https://doi.org/10.1016/S0169-5347(99)01684-5
- P. A. Stephens, W. J. Sutherland, and R. P. Freckleton, What is the Allee effects?, Oikos 87 (1999), 185-190. https://doi.org/10.2307/3547011
- F. Takens, Forced oscillations and bifurcations, Applications of global analysis, I (Sympos., Utrecht State Univ., Utrecht, 1973), pp. 1-59. Comm. Math. Inst. Rijksuniv. Utrecht, No. 3 - 1974, Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974.
- V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature 118 (1926), 558-560. https://doi.org/10.1038/118558a0
- M. H. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci. 171 (2001), no. 1, 83-97. https://doi.org/10.1016/S0025-5564(01)00048-7
- M. H. Wang, M. Kot, and M. G. Neubert, Integrodifference equations, Allee effects, and invasions, J. Math. Biol. 44 (2002), no. 2, 150-168. https://doi.org/10.1007/s002850100116
- G. Wang, X. G. Liang, and F. Z. Wang, The competitive dynamics of populations subject to an Allee effect, Ecol. Model 124 (1999), no. 2-3, 183-192. https://doi.org/10.1016/S0304-3800(99)00160-X
- D. Xiao, Bifurcations of saddle singularity of codimension three of a planar vector field with nilpotent linear part, Sci. Sinica A 23 (1993), 252-263.
- D. Xiao, L. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math. 65 (2005), no. 3, 737-753. https://doi.org/10.1137/S0036139903428719
- S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math. 61 (2001), no. 4, 1445-1472. https://doi.org/10.1137/S0036139999361896
- A. Yakubu, Multiple attractors in juvenile-adult single species models, J. Difference Equ. Appl. 9 (2003), no. 12, 1083-1098. https://doi.org/10.1080/1023619031000146887
- Z. Zhang, T. Ding, W. Huang, and Z. Dong, Qualitative Theory of Differential Equations, Science Press, Beijing, 1992 (in Chinese). English edition: Transl. Math. Monogr., vol. 101, Amer. Math. Soc., Providence, RI, 1992.
- S. Zhou, Y. Liu, and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theo. Pop. Biol. 67 (2005), 23-31. https://doi.org/10.1016/j.tpb.2004.06.007
- H. Zhu and S. A. Campbell, and G. S. K. Wolkowicz, Bifurcation analysis of a predator- prey system with nonmonotonic fuctional response, SIAM J. Appl. Math. 63 (2005), 636-682.
Cited by
- Detecting the presence of depensation in collapsed fisheries: The case of the Northern cod stock vol.97, 2014, https://doi.org/10.1016/j.ecolecon.2013.11.006
- An SEI infection model incorporating media impact vol.14, pp.5/6, 2017, https://doi.org/10.3934/mbe.2017068
- A Simple Predator-Prey Population Model with Rich Dynamics vol.6, pp.5, 2016, https://doi.org/10.3390/app6050151
- Dynamical Analysis of a Stochastic Predator-Prey Model with an Allee Effect vol.2013, 2013, https://doi.org/10.1155/2013/340980