References
- A. Barari and M. Omidvar, An apprioximate solution for boundary value problems instructural engineering and mechanics, Math. Prom. Eng. 2008 (2008), no. 10, 1-10.
- M. K. Jain, S. R. K. Iyengar, and J. S. V. Saldanha, Numerical solution of a fourth-order ordinary differential equation, J. Engrg. Math. 11 (1977), no. 4, 373-380. https://doi.org/10.1007/BF01537095
- M. A. Noor and S. T. Molyud-Din, A reliable approach for solving linear and nonlinear sixth-order boundary value problems, Int. J. Comput. Appl. Math. 2 (2007), no. 2, 163-172.
- M. A. Noor, K. I. Noor, and S. T. Mohyud-Din, Variational iteration method for solving sixth-order boundary value problems, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 6, 2571-2580. https://doi.org/10.1016/j.cnsns.2008.10.013
- M. H. Pei, Existence and uniqueness of solutions to two-point boundary value problems for ordinary differential equations of order 2n, J. Systems Sci. Math. Sci. 17 (1997), no. 2, 165-172.
-
R. A. Usmani, An O(
$h^6$ ) finite difference analogue for the solution of some differential equations occurring in plate deflection theory, J. Inst. Math. Appl. 20 (1977), no. 3, 331-333. https://doi.org/10.1093/imamat/20.3.331 - R. A. Usmani, A uniqueness theorem for a boundary value problem, Proc. Amer. Math. Soc. 77 (1979), no. 3, 329-335. https://doi.org/10.1090/S0002-9939-1979-0545591-4
- R. A. Usmani, Discrete methods for boundary value problems with applications in plate deflection theory, Z. Angew. Math. Phys. 30 (1979), no. 1, 87-99. https://doi.org/10.1007/BF01597483
- R. A. Usmani and M. J. Marsden, Numerical solution of some ordinary differential equations occurring in plate deflection thery, J. Engrg. Math. 9 (1975), no. 1, 1-10. https://doi.org/10.1007/BF01535492
- R. A. Usmani and M. J. Marsden, Convergence of a numerical procedure for the solution of a fourth-order boundary value problem , Proc. Indian Acad. Sci. Sect. A Math. Sci. 88 (1979), no. 1, 21-30. https://doi.org/10.1007/BF02898331
- X. Q. Wang, On a boundary value problem arising in elastic deflection theory, Bull. Austral. Math. Soc. 74 (2006), no. 3, 337-345. https://doi.org/10.1017/S0004972700040405
- A. M. Wazwaz, The numerical solution of sixth-order boundary value problems by the modified decomposition method, Apple. Math. Comput. 118 (2001), no. 2-3, 311-325. https://doi.org/10.1016/S0096-3003(99)00224-6
- C. Xu and S. Sun, Introduction to Computational Methods, Higher Education Press, Beijing, 2002.
- K. Zhang and Y. Zhao, Algorithm and Analysis of Numerical Computation, Science Press, Beijing, 2003.