DOI QR코드

DOI QR Code

Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based Electrolytes by the Addition of Fumed Silica

  • Louis, Hamenu (Department of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Lee, Young-Gi (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang Man (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Cho, Won Il (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Ko, Jang Myoun (Department of Applied Chemistry and Biotechnology, Hanbat National University)
  • Received : 2013.02.22
  • Accepted : 2013.03.23
  • Published : 2013.06.20

Abstract

The corrosion property of aluminum by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is investigated in liquid and gel electrolytes consisting of ethylene carbonate/propylene carbonate/ethylmethyl carbonate/diethyl carbonate (20:5:55:20, vol %) with vinylene carbonate (2 wt %) and fluoroethylene carbonate (5 wt %) using conductivity measurement, cyclic voltammetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. All corrosion behaviors are attenuated remarkably by using three gel electrolytes containing 3 wt % of hydrophilic and hydrophobic fumed silica. The addition of silica particles contributes to the increase in the ionic conductivity of the electrolyte, indicating temporarily formed physical crosslinking among the silica particles to produce a gel state. Cyclic voltammetry also gives lower anodic current responses at higher potentials for repeating cycles, confirming further corrosion attenuation or electrochemical stability. In addition, the degree of corrosion attenuation can be affected mainly by the electrolytic constituents, not by the hydrophilicity or hydrophobicity of silica particles.

Keywords

References

  1. Bruce, P. G. Solid State Ionics 2008, 179, 752. https://doi.org/10.1016/j.ssi.2008.01.095
  2. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. J. Phys. Chem. Lett. 2010, 1, 2193. https://doi.org/10.1021/jz1005384
  3. Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. J. Power Sources 2003, 119-121, 784. https://doi.org/10.1016/S0378-7753(03)00253-2
  4. Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. J. Power Sources 1997, 68, 320. https://doi.org/10.1016/S0378-7753(97)02517-2
  5. Abouimrane, A.; Ding, J.; Davison, I. J. J. Power Sources 2009, 189, 693. https://doi.org/10.1016/j.jpowsour.2008.08.077
  6. Chen, Z.; Lu, W. Q.; Liu, J.; Amine, K. Electrochim. Acta 2006, 51, 3322. https://doi.org/10.1016/j.electacta.2005.09.027
  7. Peng, C.; Yang, L.; Zhang, Z.; Tachibana, K.; Yang, Y. J. Power Sources 2007, 173, 510. https://doi.org/10.1016/j.jpowsour.2007.05.006
  8. Han, H.-B.; Zhou, S.-S.; Zhang, D.-J.; Feng, S.-W.; Li, L.-F.; Liu, K.; Feng, W.-F.; Nie, J.; Huang, X.-J.; Armand, M.; Zhou, Z.-B. J. Power Sources 2011, 196, 3623. https://doi.org/10.1016/j.jpowsour.2010.12.040
  9. Garcia, B.; Armand, M. J. Power Sources 2004, 132, 206. https://doi.org/10.1016/j.jpowsour.2003.12.046
  10. Angell, C. A.; Xu, W.; Yoshizawa, M.; Hayashi, A.; Belieres, J.-P.; Lucas, P.; Videa, M.; Ohno, H. Electrochemical Aspects of Ionic Liquids; John Wiley & Sons: 2005; pp 5-23.
  11. Wang, X.; Yasukawa, E.; Mori, S. Electrochim. Acta 2000, 45, 2677. https://doi.org/10.1016/S0013-4686(99)00429-6
  12. Nadherna, M.; Dominko, R.; Hanzel, D.; Reiter, J.; Gaberscek, M. J. Electrochem. Soc. 2009, 156, A619. https://doi.org/10.1149/1.3133183
  13. Mun, J.; Yim, T.; Choi, C. Y.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. Electrochem. Solid-State Lett. 2010, 13, A109. https://doi.org/10.1149/1.3432256
  14. Cho, E.; Mun, J.; Chae, O. B.; Kwon, O. M.; Kim, H.-T.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. Electrochem. Commun. 2012, 22, 1. https://doi.org/10.1016/j.elecom.2012.05.018
  15. Kühnel, R.-S.; Lubke, M.; Winter, M.; Passerini, S.; Balducci, A. J. Power Sources 2012, 214, 178. https://doi.org/10.1016/j.jpowsour.2012.04.054
  16. Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Electrochim. Acta 2002, 47, 2787. https://doi.org/10.1016/S0013-4686(02)00164-0
  17. Zhang, S. S.; Jow, T. R. J. Power Sources 2002, 109, 458. https://doi.org/10.1016/S0378-7753(02)00110-6
  18. Song, S.-W.; Richardson, T. J.; Zhuang, G. V.; Devine, T. M.; Evans, J. W. Electrochim. Acta 2004, 49, 1483. https://doi.org/10.1016/j.electacta.2003.10.034
  19. Li, Y.; Zhang, X.-W.; Khan, S. A.; Fedkiw, P. S. Electrochem. Solid-State Lett. 2004, 7, A228. https://doi.org/10.1149/1.1756857
  20. Li, Y.; Fedkiw, P. S. Electrochim. Acta 2007, 52, 2471. https://doi.org/10.1016/j.electacta.2006.08.066
  21. Candan, S. Mater. Lett. 2004, 58, 3601. https://doi.org/10.1016/j.matlet.2004.06.053
  22. http://www.aerosil.com/product/aerosil/en/products.
  23. Roberge, P. R. Handbook of Corrosion Engineering; McGraw-Hill, 2000.
  24. Li, Y.; Fedkiw, P. S.; Khan, S. A. Electrochim. Acta 2002, 47, 3853. https://doi.org/10.1016/S0013-4686(02)00326-2
  25. Zhang, X.-W.; Li, Y.; Khan, S. A.; Fedkiw, P. S. J. Electrochem. Soc. 2004, 151, A1257. https://doi.org/10.1149/1.1767158

Cited by

  1. S nanoparticles for lithium–sulfur-batteries vol.3, pp.31, 2015, https://doi.org/10.1039/C5TA04504E
  2. Allotropic Control: How Certain Fluorinated Carbonate Electrolytes Protect Aluminum Current Collectors by Promoting the Formation of Insoluble Coordination Polymers vol.120, pp.33, 2016, https://doi.org/10.1021/acs.jpcc.6b05241
  3. Polymerizable Ionic Liquids for Solid-State Polymer Electrolytes vol.24, pp.2, 2019, https://doi.org/10.3390/molecules24020324
  4. Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries vol.16, pp.6, 2013, https://doi.org/10.1016/j.cap.2016.03.012
  5. An organic-inorganic semi-interpenetrating network ionogel electrolyte for high-voltage lithium metal batteries vol.8, pp.9, 2020, https://doi.org/10.1039/c9ta05804d
  6. Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing vol.502, pp.None, 2013, https://doi.org/10.1016/j.jpowsour.2021.229919
  7. Novel nanocomposites of Ni-Pc/polyaniline for the corrosion safety of the aluminum current collector in the Li-ion battery electrolyte vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-91688-0