• Title/Summary/Keyword: LiTFSI-based electrolytes

Search Result 8, Processing Time 0.026 seconds

Electrochemical Properties of Binary Electrolytes for Lithium-sulfur Batteries

  • Kim, Hyung-Sun;Jeong, Chang-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3682-3686
    • /
    • 2011
  • The electrochemical properties of lithium-sulfur batteries with binary electrolytes based on DME and DOL, TEGDME and DOL mixed solvent containing $LiClO_4$, LiTFSI, and LiTF salts were investigated. The ionic conductivity of 1M LiTFSI and $LiClO_4$ electrolytes based on TEGDME and DOL increased as the volume ratio of DOL solvent increased, because DOL effectively reduces the viscosity of the above electrolytes medium under the same salts concentration. The first discharge capacity of lithium-sulfur batteries in the DME and DOL-based electrolyte followed this order: LiTFSI (1,000 mAh/g) > LiTF (850 mAh/g) > $LiClO_4$ (750 mAh/g). In case of the electrolyte based on TEGDME and DOL, the first discharge capacity of batteries followed this order: $LiClO_4$ (1,030 mAh/g) > LiTF (770 mAh/g) > LiTFSI (750 mAh/g). The cyclic efficiency of lithium-sulfur batteries at 1M $LiClO_4$ electrolytes is higher than that of batteries at other lithium salts-based electrolytes. Lithium-sulfur battery showed discharge capacity of 550 mAh/g until 20 cycles at all electrolytes based on DME and DOL solvent. By contrast, the discharge capacity of batteries was about 450 mAh/g at 1M LiTFSI and LiTF electrolytes based on TEGDME and DOL solvent after 20 cycles.

Properties of N-butyl-N-methyl-pyrrolidinium Bis(trifluoromethanesulfonyl) Imide Based Electrolytes as a Function of Lithium Bis(trifluoromethanesulfonyl) Imide Doping

  • Kim, Jae-Kwang;Lim, Du-Hyun;Scheers, Johan;Pitawala, Jagath;Wilken, Susanne;Johansson, Patrik;Ahn, Jou-Hyeon;Matic, Aleksandar;Jacobsson, Per
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.92-97
    • /
    • 2011
  • In this study we have investigated the Li-ion coordination, thermal behavior and electrochemical stability of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ($Py_{14}TFSI$) with lithium bis(trifluoromethanesulfony)imide (LiTFSI) doping intended for use as electrolytes for lithium batteries. The ionic conductivity is reduced and glass transition temperature ($T_g$) increases with LiTFSI doping concentration. Also, the electrochemical stability increases with LiTFSI doping. A high LiTFSI doping could enhance the electrochemical stability of electrolytes for lithium batteries, whereas the decrease in the ionic conductivity limits the capacity of the battery.

Mixed Electrolytes of Organic Solvents and Ionic Liquid for Rechargeable Lithium-Ion Batteries

  • Choi, Ji-Ae;Shim, Eun-Gi;Scrosati, Bruno;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3190-3194
    • /
    • 2010
  • Mixed electrolytes formed by the combination of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP-TFSI) ionic liquid and standard liquid electrolyte are prepared and characterized. Linear sweep voltammetry measurements demonstrate that these mixed systems exhibit a wide electrochemical stability window, allowing them to be suitable electrolyte for carbonaceous anode-based lithium-ion batteries. Lithium-ion cells composed of graphite anode and $LiCoO_2$ cathode are assembled using the mixed electrolytes, and their cycling performances are evaluated. The cell containing proper content of BMP-TFSI shows good cycling performance comparable to that of a cell assembled with organic electrolyte. The presence of BMP-TFSI in the mixed electrolyte contributes to the reduction of the flammability of electrolyte solution and the improvement of the thermal stability of charged $Li_{1-x}CoO_2$ in the electrolyte solution.

Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based Electrolytes by the Addition of Fumed Silica

  • Louis, Hamenu;Lee, Young-Gi;Kim, Kwang Man;Cho, Won Il;Ko, Jang Myoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1795-1799
    • /
    • 2013
  • The corrosion property of aluminum by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is investigated in liquid and gel electrolytes consisting of ethylene carbonate/propylene carbonate/ethylmethyl carbonate/diethyl carbonate (20:5:55:20, vol %) with vinylene carbonate (2 wt %) and fluoroethylene carbonate (5 wt %) using conductivity measurement, cyclic voltammetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. All corrosion behaviors are attenuated remarkably by using three gel electrolytes containing 3 wt % of hydrophilic and hydrophobic fumed silica. The addition of silica particles contributes to the increase in the ionic conductivity of the electrolyte, indicating temporarily formed physical crosslinking among the silica particles to produce a gel state. Cyclic voltammetry also gives lower anodic current responses at higher potentials for repeating cycles, confirming further corrosion attenuation or electrochemical stability. In addition, the degree of corrosion attenuation can be affected mainly by the electrolytic constituents, not by the hydrophilicity or hydrophobicity of silica particles.

Preparation of Dual-functionalized Polymeric Membrane Electrolyte and Ni, Co-based Nanowire/MOF Array on Carbon Cloth for High-performance Supercapacitor (이중 기능 고분자 전해질 막의 제조 및 탄소 섬유에 니켈, 코발트 기반의 나노와이어/MOF 배열을 통한 고성능 슈퍼커패시터 연구)

  • Hye Jeong Son;Bong Seok Kim;Ji Min Kwon;Yu Bin Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.211-221
    • /
    • 2023
  • This study presents a comprehensive study on the synthesis and characterization of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C flexible electrodes for energy storage applications. The dual-functional PVI-PGMA copolymer exhibited excellent ionic conductivity, with the PVI-PGMA73/LiTFSI200 membrane electrolyte achieving the highest conductivity of 1.0 × 10-3 S cm-1. The electrochemical performance of the CxNy-C electrodes was systematically investigated, with C3N2-C demonstrating superior performance, achieving the highest specific capacitance of 958 F g-1 and lowest charge transfer resistance (Rct) due to its highly interconnected hybrid structure comprising nanowires and polyhedrons, along with binary Co/Ni oxides, which provided abundant redox-active sites and facilitated ion diffusion. The presence of a graphitic carbon shell further contributed to the enhanced electrochemical stability during charge-discharge cycles. These results highlight the potential of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C electrodes for advanced energy storage devices, such as supercapacitors and lithium-ion batteries, paving the way for further advancements in sustainable and high-performance energy storage technologies.

Optimization of electrolyte and carbon conductor for dilithium terephthalate organic batteries

  • Lim, Ji-Eun;Kim, Jae-Kwang
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2464-2467
    • /
    • 2018
  • Organic batteries are attractive alternatives to conventional inorganic batteries because of their low cost, biodegradation, and renewability, and their consequent environmental friendliness. We investigated the influence of carbon conductors and electrolytes in organic batteries using dilithium terephthalate ($Li_2C_8H_4O_4$). The synthesized dilithium terephthalate has well-grown crystallinity and non-uniform shaped particles without impurities. The dilithium terephthalate-based battery shows good electrochemical properties with a LiTFSI/TEGDME electrolyte and graphene as the carbon conductor in an organic electrode. The results are ascribed to the high lithium transference number of LiTFSI/TEGDME and the high electrical conductivity of graphene.

Electrochemical properties of PEO-based solid polymer electrolytes blended with different room temperature ionic liquids

  • Kim, Y.H.;Cheruvally, G.;Choi, J.W.;Ahn, J.H.;Kim, K.W.;Ahn, H.J.;Song, C.E.;Choi, D.S.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.276-276
    • /
    • 2006
  • The incorporation of room temperature ionic liquids (IL) in poly (ethyleneoxide)-lithium salt (PEO-LiX) based solid polymer electrolytes is presently being studied as an effective means of enhancing the room temperature ionic conductivity of these electrolytes to acceptable levels for use in lithium batteries. In the present study, $PEO_{20}-LiTFSI$ solid polymer electrolyte was blended with three different ionic liquids, namely 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMIMTFSI), 1-butyl-3-methylimidazolium tetraflouroborate (BMIMBF4) and 1-butyl-3-methylimidazolium trifluromethanesulfonate ($BMIMCF_{3}SO_{3}$). The incorporation of all these ILs resulted in the enhancement of ionic conductivity, the effect being more pronounced at lower temperatures. Electrochemical properties of the blended electrolytes were studied by cyclic voltammetry, linear sweep voltammetry and interfacial resistance measurements. The optimum results were obtained with the blending of BMIMTFSI in the solid polymer electrolyte.

  • PDF

Electrochemical Properties of Lithium Sulfur Battery with Silicon Anodes Lithiated by Direct Contact Method

  • Kim, Hyung Sun;Jeong, Tae-Gyung;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.228-233
    • /
    • 2016
  • It is hard to employ the carbon materials or the lithium metal foil for the anode of lithium sulfur batteries because of the poor passivation in ether-based electrolytes and the formation of lithium dendrites, respectively. Herein, we investigated the electrochemical characteristics of lithium sulfur batteries with lithiated silicon anode in the liquid electrolytes based on ether solvents. The silicon anodes were lithiated by direct contact with lithium foil in a 1M lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) solution in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 1:1. They were readily lithiated up to ~40% of their theoretical capacity with a 30 min contact time. In particular, the carbon mesh reported in our previous work was employed in order to maximize the performance by capturing the dissolved polysulfide in sulfur cathode. The reversible specific capacity of the lithiated silicon-sulfur batteries with carbon mesh was 1,129 mAh/g during the first cycle, and was maintained at 297 mAh/g even after 50 cycles at 0.2 C, without any problems of poor passivation or lithium dendrite formation.