DOI QR코드

DOI QR Code

Properties of N-butyl-N-methyl-pyrrolidinium Bis(trifluoromethanesulfonyl) Imide Based Electrolytes as a Function of Lithium Bis(trifluoromethanesulfonyl) Imide Doping

  • Kim, Jae-Kwang (Department of Applied Physics, Chalmers University of Technology) ;
  • Lim, Du-Hyun (Department of Chemical & Biological Engineering, Gyeongsang National University) ;
  • Scheers, Johan (Department of Applied Physics, Chalmers University of Technology) ;
  • Pitawala, Jagath (Department of Applied Physics, Chalmers University of Technology) ;
  • Wilken, Susanne (Department of Applied Physics, Chalmers University of Technology) ;
  • Johansson, Patrik (Department of Applied Physics, Chalmers University of Technology) ;
  • Ahn, Jou-Hyeon (Department of Chemical & Biological Engineering, Gyeongsang National University) ;
  • Matic, Aleksandar (Department of Applied Physics, Chalmers University of Technology) ;
  • Jacobsson, Per (Department of Applied Physics, Chalmers University of Technology)
  • Received : 2011.03.14
  • Accepted : 2011.05.30
  • Published : 2011.05.31

Abstract

In this study we have investigated the Li-ion coordination, thermal behavior and electrochemical stability of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ($Py_{14}TFSI$) with lithium bis(trifluoromethanesulfony)imide (LiTFSI) doping intended for use as electrolytes for lithium batteries. The ionic conductivity is reduced and glass transition temperature ($T_g$) increases with LiTFSI doping concentration. Also, the electrochemical stability increases with LiTFSI doping. A high LiTFSI doping could enhance the electrochemical stability of electrolytes for lithium batteries, whereas the decrease in the ionic conductivity limits the capacity of the battery.

Keywords

References

  1. P. Wasserscheid and W. Keim, 'Ionic Liquids-New "Solutions" for Transition Metal Catalysis' Angew. Chem. Int., 39, 3772 (2000). https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  2. M. Galinski, A. Lewandowski, and I. St pniak, 'Ionic liquids as electrolytes' Electrochim. Acta, 51, 5567 (2006). https://doi.org/10.1016/j.electacta.2006.03.016
  3. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, and B. Scrosati, 'Ionic-liquid materials for the electrochemical challenges of the future' Nat. Mater., 8, 621 (2009). https://doi.org/10.1038/nmat2448
  4. M. Holzapfel, C. Jost, and P. Novak, 'Stable cycling of graphite in an ionic liquid based electrolyte' Chem. Commun., 2098 (2004).
  5. S. Forsyth, J. Golding, D.R. MacFarlane, and M. Forsyth, 'N-methyl-N-alkylpyrrolidinium tetrafluoroborate salts: ionic solvents and solid electrolytes' Electrochim. Acta, 46, 1753 (2001). https://doi.org/10.1016/S0013-4686(00)00781-7
  6. S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, S. Protti, S. Lazzaroni, M. Fagnoni, and A. Albini, 'A binary ionic liquid system composed of N-methoxyethyl-Nmethylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries' J. Power Sources, 194, 45 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.013
  7. J. Huang, and A.F. Hollenkamp, 'Thermal behavior of ionic liquids containing the FSI anion and $Li^+$ cation' J. Phys. Chem. C, 114, 21840 (2010). https://doi.org/10.1021/jp107740p
  8. H. Sakaebe, and H. Matsumoto, 'N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery' Electrochem. Commun., 5, 594 (2003). https://doi.org/10.1016/S1388-2481(03)00137-1
  9. A. Noda, K. Hayamizu, and M. Watanabe, 'Pulsed-gradient spinecho $^1H and ^{19}F$ NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids' J. Phys. Chem. B, 105, 4603 (2001). https://doi.org/10.1021/jp004132q
  10. K.J. Fraser, E.I. Izgorodina, M. Forsyth, J.L. Scott, and D.R. MacFarlane, 'Liquids intermediate between "molecular" and "ionic" liquids: Liquid Ion Pairs?' Chem. Commun., 3817 (2007).
  11. K.-S. Kim, S. Choi, D. Demberelnyamba, H. Lee, J. Oh, B.-B. Lee, and S.-J. Mun, 'Ionic liquids based on N-alkyl-Nmethylmorpholinium salts as potential electrolytes' Chem. Commun., 828 (2004).
  12. S. Seki, Y. Umebayashi, S. Tsuzuki, K. Hayamizu, Y. Kobayashi, Y. Ohno, T. Kobayashi, Y. Mita, H. Miyashiro, N. Terada, and S.I. Ishiguro, 'Phase transition and conductive acceleration of phosphonium-cation-based roomtemperature ionic liquid' Chem. Commun., 5541 (2008).
  13. D. Gerhard, S.C. Alpaslan, H.J. Gores, M. Uerdingen, and P. Wasserscheid, 'Trialkylsulfonium dicyanamides - a new family of ionic liquids with very low viscosities' Chem. Commun., 5080 (2005).
  14. E.-H. Cha, S.-A. Lim, D.-W. Kim, J.-K. Lee, and J.-H. Park, 'Physical properties of lithium co-polyelectrolyte based on imidazolium and ammonium-type ionic liquids' J. Korean Electrochemical Society, 13, 198 (2010). https://doi.org/10.5229/JKES.2010.13.3.198
  15. W.A. Henderson and S. Passerini, 'Phase behavior of ionic liquid-LiX mixtures: pyrrolidinium cations and TFSIanions' Chem. Mater., 16, 2881 (2004). https://doi.org/10.1021/cm049942j
  16. J.-C. Lassègues, J. Grondin, C. Aupetit, and P. Johansson, 'Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids' J. Phys. Chem. A, 113, 305 (2009). https://doi.org/10.1021/jp806124w
  17. J.-K. Kim, A. Matic, J.-H. Ahn, and P. Jacobsson, 'An imidazolium based ionic liquid electrolyte for lithium batteries' J. Power Sources, 195, 7639 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.005
  18. A. Lewandowski, and A. Swiderska-Mocek, 'Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies' J. Power Sources, 194, 601 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.089
  19. S. Randstrom, G.B. Appetecchi, C. Lagergren, A. Moreno, S. Passerini, 'The influence of air and its components on the cathodic stability of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide' Electrochim. Acta, 53, 1837 (2007). https://doi.org/10.1016/j.electacta.2007.08.029
  20. I. Rey, P. Johansson, J. Lindgren, J.-C. Lassegues, J. Grondin, and L. Servant, 'Spectroscopic and theoretical study of ($CF_3SO_2)_2N−$ (TFSI−) and $(CF_3SO_2)_2NH$ (HTFSI)' J. Phys. Chem. A, 102, 3249 (1998). https://doi.org/10.1021/jp980375v
  21. S. Duluard, J. Grondin, J.-L. Bruneel, I. Pianet, A. Grelard, G. Campet, M.-H. Delville and J.-C. Lassegues, 'Lithium solvation and diffusion in the 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids' J. Raman Spectrosc., 39, 627 (2008). https://doi.org/10.1002/jrs.1896
  22. T. Fromling, M. Kunze, M. Schonhoff, J. Sundermeyer, and B. Roling, 'Enhanced lithium transference numbers in ionic liquid electrolytes' J. Phys. Chem. B, 112, 12985 (2008). https://doi.org/10.1021/jp804097j
  23. H.F. Xiang, B. Yin, H. Wang, H.W. Lin, X.W. Ge, S. Xie, and C.H. Chen, 'Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries' Electrochim. Acta, 55, 5204 (2010). https://doi.org/10.1016/j.electacta.2010.04.041
  24. Z.P. Rosol, N.J. German and S.M. Gross, 'Solubility, ionc conductivity and viscosity of lithium salt in room temperature ionic liquids' Green Chem., 11, 1453 (2009). https://doi.org/10.1039/b818176d
  25. A. Martinelli, A. Matic, P. Jacobsson, L. Borjesson, A. Fernicola, and B. Scrosati, 'Phase behavior and ionic conductivity in lithium bis(trifluoromethanesulfonyl)imide doped ionic liquids of the pyrrolidinium cation and bis (trifluoromethanesulfonyl)imide anion' J. Phys. Chem. B, 113, 11247 (2009). https://doi.org/10.1021/jp905783t
  26. Q. Zhou, W.A. Henderson, G.B. Appetecchi, and S. Passerini, 'Phase behavior and thermal properties of ternary ionic liquid-lithium salt (IL-IL-LiX) electrolytes' J. Phys. Chem. C, 114, 6201 (2010). https://doi.org/10.1021/jp911759d

Cited by

  1. 7Li nuclear magnetic resonance studies of dynamics in a ternary gel polymer electrolyte based on polymeric ionic liquids vol.175, 2015, https://doi.org/10.1016/j.electacta.2015.03.026
  2. Physicochemical and electrochemical characterisation of imidazolium based IL + GBL mixtures as electrolytes for lithium-ion batteries vol.19, pp.41, 2017, https://doi.org/10.1039/C7CP04478J
  3. Influence of oligo(ethylene oxide) substituents on pyrrolidinium-based ionic liquid properties, Li+ solvation and transport vol.18, pp.31, 2016, https://doi.org/10.1039/C6CP02092E
  4. Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries vol.10, pp.9, 2017, https://doi.org/10.1007/s12274-017-1526-2
  5. Battery electrolytes based on saturated ring ionic liquids: Physical and electrochemical properties vol.109, 2013, https://doi.org/10.1016/j.electacta.2013.07.041
  6. Sodium-conducting ionic liquid-based electrolytes vol.43, 2014, https://doi.org/10.1016/j.elecom.2014.02.010
  7. Electrochemical Properties of Ionic Liquid Composite Poly(ethylene oxide)(PEO) Solid Polymer Electrolyte vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.101
  8. Ionic liquid and hybrid ionic liquid/organic electrolytes for high temperature lithium-ion battery application vol.216, 2016, https://doi.org/10.1016/j.electacta.2016.08.025
  9. Synthesis and Characterization of Guanidinium-Based Ionic Liquids as Possible Electrolytes in Lithium-Ion Batteries vol.161, pp.5, 2014, https://doi.org/10.1149/2.052405jes