DOI QR코드

DOI QR Code

Nonlinear QSAR Study of Xanthone and Curcuminoid Derivatives as α-Glucosidase Inhibitors

  • Saihi, Youcef (Department of Chemistry, Faculty of Sciences, University of Badji Mokhtar) ;
  • Kraim, Khairedine (Department of Chemistry, Faculty of Sciences, University of Badji Mokhtar) ;
  • Ferkous, Fouad (Department of Chemistry, Faculty of Sciences, University of Badji Mokhtar) ;
  • Djeghaba, Zeineddine (Department of Chemistry, Faculty of Sciences, University of Badji Mokhtar) ;
  • Azzouzi, Abdelkader (Department of Chemistry, Faculty of Sciences, University of Djelfa) ;
  • Benouis, Sabrina (Department of Chemistry, Faculty of Sciences, University of Badji Mokhtar)
  • Received : 2012.11.26
  • Accepted : 2013.03.06
  • Published : 2013.06.20

Abstract

A non linear QSAR model was constructed on a series of 57 xanthone and curcuminoide derivatives as ${\alpha}$-glucosidase inhibitors by back-propagation neural network method. The neural network architecture was optimized to obtain a three-layer neural network, composed of five descriptors, nine hidden neurons and one output neuron. A good predictive determination coefficient was obtained (${R^2}_{Pset}$ = 86.7%), the statistical results being better than those obtained with the same data set using a multiple regression analysis (MLR). As in the MLR model, the descriptor MATS7v weighted by Van der Waals volume was found as the most important independent variable on the ${\alpha}$-glucosidase inhibitory.

Keywords

References

  1. Din, Z. Y.; Liu, R. R.; Shao, W. Y.; Mao, X. Q.; Ma, L.; Quan, Gu, L.; Huang, Z. S.; Chan, A. S. Eur. J. Med. Chem. 2006, 41, 213. https://doi.org/10.1016/j.ejmech.2005.10.012
  2. Melo, E. B.; Gomes, A. S.; Carvalho, I. Tetrahedron 2006, 62, 10277. https://doi.org/10.1016/j.tet.2006.08.055
  3. Mehta, A.; Zitzmann, N.; Rudd, P. M.; Block, T. M.; Dwek, R. A. FEBS Lett. 1998, 430, 17. https://doi.org/10.1016/S0014-5793(98)00525-0
  4. Fischer, P. B.; Karlsson, G. B.; Butters, T. D.; Dwek, R. A.; Platt, F. M. J. Virol. 1996, 70, 7143.
  5. Hwangseo, P.; Kyo, Y. H.; Young, H. K.; Kyung, H. O.; Jae, Y. L.; Keun, K. Bioorg. Med. Chem. Lett. 2008, 18, 3711. https://doi.org/10.1016/j.bmcl.2008.05.056
  6. Blickle, J. F.; Andres, E.; Brogard, J. M. Rev. Med. Interne. 1999, 20, 379. https://doi.org/10.1016/S0248-8663(99)83087-2
  7. Chiasson, J. L.; Josse, R. G.; Gomis, R.; Hanefeld, M.; Karasik, A.; Laakso, M. Lance. 2002, 359, 2072. https://doi.org/10.1016/S0140-6736(02)08905-5
  8. Luo, J. G.; Ma, L.; Kong, L. Y. Bioorg. Med. Chem. 2008, 16, 2912. https://doi.org/10.1016/j.bmc.2007.12.053
  9. Yan, L.; Lin, M.; Wen-Hua, C.; Bo, W.; Zun-Le, X. Bioorg. Med. Chem. 2007, 15, 2810. https://doi.org/10.1016/j.bmc.2007.02.030
  10. Gao, H.; Kawabata, J. Bioorg. Med. Chem. 2005, 13, 1661. https://doi.org/10.1016/j.bmc.2004.12.010
  11. Muraoka, O.; Yoshikai, K.; Takahashi, H.; Minematsu, T.; Lu, G. X.; Tanabe, G.; Wang, T.; Matsuda, H.; Yoshikawa, M. Bioorg. Med. Chem. 2006, 14, 500. https://doi.org/10.1016/j.bmc.2005.08.040
  12. Varnek, A.; Tropsha, A. Chemoinformatics Approaches to Virtual Screening; Royal Society of Chemistry: United Kingdom., 2008; pp 18-88.
  13. Karelson, M. Molecular Descriptors in QSAR/QSPR; Wiley-Interscience: New York, 2000; pp 19-71.
  14. Liu, Y.; Ke, Z.; Cui, J.; Chen, W. H.; Ma, L.; Wang, B. Bioorg. Med. Chem. 2008, 16, 7185. https://doi.org/10.1016/j.bmc.2008.06.043
  15. Kraim, K.; Khatmi, D.; Saihi, Y.; Ferkous, F.; Brahimi, M. Chemom. Intell. Lab. Syst. 2009, 97, 118. https://doi.org/10.1016/j.chemolab.2009.03.006
  16. Jun, X.; Sichao, H.; Haibin, L.; Guoji, L.; Jiaolin, B.; Shaohui, C.; Yuqiang, W. Int. J. Mol. Sci. 2010, 11, 880. https://doi.org/10.3390/ijms11030880
  17. Devillers, J. Neural Networks in QSAR and Drug Design; Academic Press: Limited. United Kingdom, 1996; pp 45-62.
  18. Sattwa, A. M.; Roy, K. Eur. J. Med. Chem. 2009, 44, 1509. https://doi.org/10.1016/j.ejmech.2008.07.020
  19. Yaobin, M.; Bin-Le, L. Ecotoxicol. Environ. Safe. 2008, 71, 172. https://doi.org/10.1016/j.ecoenv.2007.06.011
  20. Yangali-Quintanilla, V.; Verliefde, A.; Kim, T.-U.; Sadmani, A.; Kennedy, M.; Amy, G. J. Membr. Sci. 2009, 342, 251. https://doi.org/10.1016/j.memsci.2009.06.048
  21. Liu, Y.; Zou, L.; Ma, L.; Chen, W.-H.; Wang, B.; Xu, Z.-L. Bioorg. Med. Chem. 2006, 14, 5683. https://doi.org/10.1016/j.bmc.2006.04.014
  22. Du, Z. Y.; Liu, R. R.; Shao, W. Y.; Mao, X. P.; Ma, L.; Gu, L. Q.; Huang, Z. S.; Chan, A. S. C. Eur. J. Med. Chem. 2006, 41, 213. https://doi.org/10.1016/j.ejmech.2005.10.012
  23. Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design; Wiley-VCH: Weinheim., 1999; pp 15-19.
  24. Winkler, D. A. Molecular Biotech. 2004, 27, 139. https://doi.org/10.1385/MB:27:2:139
  25. Nantasenamat, C.; Naenna, T.; Isarankura, C. A.; Prachayasittikul, V. J. Comput. Aided Mol. Des. 2005, 19, 509. https://doi.org/10.1007/s10822-005-9004-4
  26. Schneider, G.; Wrede, P. Prog. Biophys. Mol. Biol. 1998, 70, 175. https://doi.org/10.1016/S0079-6107(98)00026-1
  27. MINITAB, version 15.1.0.0, Minitab Inc. (http://www.minitab.com).
  28. MATLAB, version 7.0, The MathWorks Inc., 2004. (http://www. mathworks.com).
  29. Zahouily, M.; Rakik, J.; Lazar, M.; Bahlaoui, M. A.; Rayadh, A.; Komiha, N. ARKIVOC. 2007, xiv, 245.
  30. Golbraikh, A.; Tropsha, A. J. Mol. Graph. Model. 2002, 20, 269. https://doi.org/10.1016/S1093-3263(01)00123-1
  31. Andrea, T. A.; Kalayeh, H. J. Med. Chem. 1991, 34, 2824. https://doi.org/10.1021/jm00113a022
  32. Guha, R.; Jurs, P. C. J. Chem. Inf. Model. 2005, 45, 800. https://doi.org/10.1021/ci050022a
  33. Zheng, F.; Bayram, E.; Sumithran, S. P.; Ayers, J. T.; Zhan, C. G.; Schmitt, J. D.; Dwoskina, L. P.; Crooks, P. A. Bioorg. Med. Chem. 2006, 14, 3017. https://doi.org/10.1016/j.bmc.2005.12.036
  34. Cherqaoui, D.; Esseffer, M.; Villemin, D.; Cence, J. M.; Chastrette, M.; Zakarya, D. New J. Chem. 1998, 22, 839. https://doi.org/10.1039/a709269e

Cited by

  1. Beyond model interpretability using LDA and decision trees for α‐amylase and α‐glucosidase inhibitor classification studies vol.94, pp.1, 2013, https://doi.org/10.1111/cbdd.13518