DOI QR코드

DOI QR Code

Synthesis and Properties of Poly[oxy(arylene)oxy(tetramethyldisilylene)]s via Melt Copolymerization Reaction

  • Received : 2013.01.26
  • Accepted : 2013.03.05
  • Published : 2013.06.20

Abstract

We carried out the melt copolymerization reactions of 1,2-bis(diethylamino)tetramethyldisilane with several aryldiols such as, 4,4'-biphenol, 4,4'-isopropylidenediphenol, 9H-fluoren-9,9-dimethanol, and 4,4'-(9-fluorenylidene) bis(2-phenoxyethanol) to afford poly[oxy(arylene)oxy(tetramethyldisilylene)]s containing fluorescent aromatic chromophore groups in the polymer main chain: poly[oxy(4,4'-biphenylene)oxy(tetramethyldisilylene)], poly[oxy{(4,4'-isopropylidene) diphenylene}oxy(tetramethyldisilylene)], poly[oxy(9H-fluorene-9,9-dimethylene) oxy(tetramethyldisilylene)], and poly[oxy{4,4'-(9-fluorenylidene)bis(2-phenoxyethylene)}oxy(tetramethyldisilnylene)]. These prepared materials are soluble in common organic solvents such as $CHCl_3$ and THF. The obtained polymers were characterized by several spectroscopic methods such as $^1H$, $^{13}C$, and $^{29}Si$ NMR. Further, FTIR spectra of all the polymers exhibited characteristic Si-O stretching frequencies at 1014-1087 $cm^{-1}$. These polymeric materials in THF showed strong maximum absorption peaks at 268-281 nm, strong maximum excitation peaks at 263-291 nm, and strong maximum fluorescence emission bands at 314-362 nm due to the presence of tetramethyldisilylene and several arylene chromophores in the polymer main chain. TGA thermograms indicated that most of the polymers were stable up to $200^{\circ}C$ with a weight loss of 3-16% in nitrogen.

Keywords

References

  1. Chen, J.; Cao, Y. Macromol. Rapid Commun. 2007, 28, 1714. https://doi.org/10.1002/marc.200700326
  2. Jenekhe, S. A. Chem. Mater. 2004, 16, 4381. https://doi.org/10.1021/cm041000r
  3. Clarson, S. J.; Semlyen, J. A. In Siloxane Polymers; PTR Prentice Hall, Inc.: Englewood Cliffs, New Jersey, 1993.
  4. Baran, D.; Balan, A.; Celebi, S.; Esteban, B. M.; Neugebauer, H.; Sariciftci, N. S.; Toppare, L. Chem. Mater. 2010, 22, 2978. https://doi.org/10.1021/cm100372t
  5. Barashkov, N. N.; Gunder, O. A. In Fluorescent Polymers; Ellis Horwood: London, UK, 1994.
  6. Bisberg, J.; Cumming, W. J.; Gaudiana, R. A.; Hutchinson, K. D.; Ingwall, R. T.; Kolb, E. S.; Mehta, P. G.; Minns, R. A.; Petersen, C. P. Macromolecules 1995, 28, 386. https://doi.org/10.1021/ma00105a056
  7. Toulokhonova, I.; Bjerke-Kroll, B.; West, R. J. Organomet. Chem. 2003, 686, 101. https://doi.org/10.1016/S0022-328X(03)00672-7
  8. Jim, C. K. W.; Hu, R.; Faisal, M,; Lam, J. W. Y.; Tang, B. Z. Polymer Preprints 2011, 52(2), 842.
  9. Homrighausen, C. L.; Keller, T. D. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 88. https://doi.org/10.1002/pola.10091
  10. Dias, F. B.; Lima, J. C.; Macanita, A,; Clarson. S. J.; Horta, A.; Pierola, I. Macromolecules 2000, 33, 4772. https://doi.org/10.1021/ma992010u
  11. Xu, C.; Wakamiya, A.; Yamaguchi, S. J. Am. Chem. Soc. 2005, 127, 1638. https://doi.org/10.1021/ja042964m
  12. Son, H.-J.; Han, W.-S.; Kim, H.; Kim, C.; Ko, J.; Lee, C.; Kang, S. O. Organometallics 2006, 25, 766. https://doi.org/10.1021/om050991v
  13. Backer, M. W.; Pernisz, U. C. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 2001, 42(1), 122.
  14. Mukherjee, I.; Drake, K.; Berke-Schlessel, D.; Lelkes, P. I.; Yeh, J.-M.; Wei, Y. Macrmolecules 2010, 43, 3277. https://doi.org/10.1021/ma902798b
  15. Chandrasekhar, V. In Inorganic and Organometallic Polymers; Springer-Verlag: Berlin, 2005.
  16. Rubinsztajn, S.; Cella, J. A. Macromolecules 2005, 38, 1061. https://doi.org/10.1021/ma047984n
  17. Cai, G.; Weber, W. P. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 2001, 42(1), 171.
  18. Nguyen, K.-A. T.; Shamshurin, A.; Clarke, S.; Matisons, J. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 2004, 45(1), 706.
  19. Carraher, C. E., Jr; Klimiuk, G. H. J. Polym. Sci., Part A-1: Polym. Chem. 1970, 8(4), 973. https://doi.org/10.1002/pol.1970.150080413
  20. Yun, S. B.; Park, Y. T. Bull. Korean Chem. Soc. 2008, 29, 2373. https://doi.org/10.5012/bkcs.2008.29.12.2373
  21. Jung, I. K.; Park, Y. T. Bull. Korean Chem. Soc. 2011, 32, 1303. https://doi.org/10.5012/bkcs.2011.32.4.1303
  22. Hwang, I.-W.; Song, N. W.; Kim, D.; Park, Y. T.; Kim, Y.-R. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2901. https://doi.org/10.1002/(SICI)1099-0488(19991015)37:20<2901::AID-POLB10>3.0.CO;2-4
  23. Choi, S. H.; Hwang, I.-W.; Kim, S. H.; Park, Y. T.; Kim, Y.-R. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 1298. https://doi.org/10.1002/polb.10190
  24. Jung, E. A.; Park, Y. T. Bull. Korean Chem. Soc. 2012, 33, 2031. https://doi.org/10.5012/bkcs.2012.33.6.2031
  25. Krieble, R. H.; Burkhard, C. A. J. Am. Chem. Soc. 1947, 69, 2689. https://doi.org/10.1021/ja01203a040
  26. Curry, J. K.; Byrd, J. D. J. Appl. Polym. Sci. 1965, 9, 295. https://doi.org/10.1002/app.1965.070090126
  27. Pretsch, E.; Bühlmann, P.; Affolter, C. In Structure Determination of Organic Compounds, Tables of Spectral Data, 3rd ed.; Springer- Verlag: Berlin, 2000.
  28. Williams, E. A. NMR Spectroscopy of Organosilicon Compounds, In The Chemistry of Organic Silicon Compunds; Patai, S; Rappoport, Z., Eds., Wiley: Chichester, UK, 1989, Vol. 1, Chapter 8.
  29. Padmanaban, M.; Kakimoto, M.; Imai, Y. J. Polym. Sci. Part A: Polym. Chem. 1990, 28, 2997. https://doi.org/10.1002/pola.1990.080281109
  30. Abe, Y.; Takeuchi, T.; Kijima, I. Bull. Chem. Soc. Jpn. 1970, 43, 2495. https://doi.org/10.1246/bcsj.43.2495
  31. Bellamy, L. J. In The Infra-red of Complex Molecules, 3rd ed.; John Wiley and Sons: New York, 1975.
  32. Armarego, W. L. F.; Perrin, D. D. In Purification of Laboratory Chemicals, 4th ed.; Butterworth-Heinemann: Oxford, 1996.

Cited by

  1. Grignard Metathesis Polymerization and Properties of 1,1-Disubstituted-2,5-dibromo-3,4-diphenylsiloles vol.35, pp.6, 2013, https://doi.org/10.5012/bkcs.2014.35.6.1825
  2. Versatile Manganese Catalysis for the Synthesis of Poly(silylether)s from Diols and Dicarbonyls with Hydrosilanes vol.2, pp.2, 2017, https://doi.org/10.1021/acsomega.6b00538
  3. Polymers from Bioderived Resources: Synthesis of Poly(silylether)s from Furan Derivatives Catalyzed by a Salen–Mn(V) Complex vol.6, pp.2, 2013, https://doi.org/10.1021/acssuschemeng.7b03932
  4. Synthesis of Poly(silyl ethers) via Iridium-Catalyzed Dehydrocoupling Polymerization vol.37, pp.14, 2013, https://doi.org/10.1021/acs.organomet.8b00316