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A non linear QSAR model was constructed on a series of 57 xanthone and curcuminoide derivatives as α-

glucosidase inhibitors by back-propagation neural network method. The neural network architecture was

optimized to obtain a three-layer neural network, composed of five descriptors, nine hidden neurons and one

output neuron. A good predictive determination coefficient was obtained (R2
Pset = 86.7%), the statistical results

being better than those obtained with the same data set using a multiple regression analysis (MLR). As in the

MLR model, the descriptor MATS7v weighted by Van der Waals volume was found as the most important

independent variable on the α-glucosidase inhibitory. 

Key Words : α-Glucosidase, Inhibitors, Xanthone-curcuminoide derivatives, QSAR, Artificial neural networks

Introduction

α-Glucosidase are membrane-bound enzymes located at

the epithelium of the small intestine1 and the key enzymes of

carbohydrate digestion. It specifically hydrolyzed the α-

glucopyranoside bond, thereby releasing an α-glucose from

the non reducing end of the sugar.2

Recently there had been wide spread interest in these

enzymes, partly because of their potential as therapeutic

targets, especially, the inhibition of α-glucosidase had been

found to contribute to block the viral infection3,4 with human

immunodeficiency virus I (HIV-I)120. Also, α-glucosidase

inhibitors can help to control postprandial blood glucose

levels in diabetic patients,5,6 thus clinical trials should that

the α-glucosidase inhibitor improved long term glycemic

control as measured by decreased hemoglobin in patients

with type II diabetes and delay the development of type II

diabetes in patients with impaired glucose tolerance.7

To date, many α-glucosidase inhibitors have been reported,

such as acarbose and voglibose from microorganisms, and 1-

deoxynojirimycin isolated from plants. However, they are

confined to glucosidic derivatives.8-11 

QSAR (Quantitative Structure-Activity Relationship) studies

are a powerful method for the design of bioactive compounds

and the prediction of activity according to the physical and

chemical properties.12,13 However, a limited number of studies

have been devoted to the search for new α-glucosidase

inhibitors using QSAR.14-16 Many different chemometrics

methods, such as Multiple Linear Regression (MLR), different

types of Neural Networks (NN), Genetic Algorithms (GAs)

can be employed to derive correlation models between

molecular structures and properties. 

In many cases, such as for biological properties, a simple

linear relationship will not result in good predictive perfor-

mance. In contrast, ANN (Artificial Neural Networks) are

able to recognize highly non-linear relationships. The flexi-

bility of ANN enables them to discover more complex re-

lationships in experimental data, comparing with the MLR

approach. Hence, the ANN provides proper analytical alter-

natives to conventional techniques and interesting approaches

to the QSAR and QSPR studies.17-20 

To the best of our knowledge, this is the first QSAR study

using ANN for the prediction of pIC50 α-glucosidase inhibitors.

Therefore, the aim of this study is to investigate the appli-

cability of ANN in relating α-glucosidase inhibitory of 57

xanthone and curcuminoide derivatives to molecular de-

scriptors and to compare the results with those obtained by a

MLR using the same set of compounds. To fully investigate

the performance of a selected descriptor subset, a variety of

ANN architectures must be considered. This is carried out

by developing models with the same set of input descriptors

but varying architectures. 

Experimental

Biological Data Set. The data set consists of 57 recently

discovered xanthone and curcuminoid derivatives as α-

glucosidase inhibitors and reported by Liu21 and Du.22 Their

molecular structures and in vitro activities are listed in Chart

1, Chart 2 and Table 1. Activities were converted into the

corresponding -logIC50 values (pIC50), where IC50 is the

effective concentration of compound required to achieve

50% of inhibition of α-glucosidase (experimental pIC50

values ranging from −2.371 to −0.204).

Molecular Modeling. The data set is split into three sets

for model building, validation and prediction purposes. They
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are the training set (TSET), validation set (VSET), and ex-

ternal prediction set (PSET). The TSET contains 50% of the

compounds and is used for model building. For model

validation, 25% of the compounds are assigned as the VSET.

The remaining 25% of the compounds are assigned as the

PSET. The following steps were performed in order to cover

Chart  1

Xanthone Derivatives
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the same ranges of activities and the same distributions for

the training and prediction data sets. 

1. All compounds were ordered in ascending order of their

pIC50 values.

2. Every second and fourth compounds were selected to

become a part of the validation and test sets respectively.

3. All the remaining compounds formed the training set.

Nonlinear ANN Approach. Artificial neural networks are

employed to solve numerous types of problems in engineer-

ing and science. The theory of ANN was described previ-

ously.23 Briefly, artificial neural networks consist of layers of

which outputs are connected to the other neurons. While

there are many different artificial neural networks architec-

ture, the most popular network used in QSAR is three layer

feed-forward networks.24-26

The backpropagation (BP) algorithm is one of the most

popularly applied to feed-forward training of neural networks,

due to its simplicity, its capacity to extract useful information

from samples and to store it implicitly as weights over their

connections. In this study, the backpropagation neural network

was applied and trained with Levenberg-Marquardt algorithm.

Due to the nonlinear input-output dependency the transfer

function was chosen sigmoid (1).

 (1)

That limits the neuron’s output signal to values between 0

and 1. The output layer neurons usually have sigmoidal or

linear transfer functions, depending on the application. The

whole network represents a non-linear relationship which

can be written for each output as (2):

 (2)

Where

: the predicted target value.

wih : is the connection weight between the input node i with

the hidden node h.

wh : are the connection weights between each hidden node h

with the final output considered, y (desired output).

θi and θh are the biases corresponding to the input and

hidden layers.

In this work, all units were fully interconnected and the

input-to-output information flow was feed-forward (no feed-

back connections). The number of neurons in the input layer

was set equal to the number of descriptors, while the number

of neurons in the output layer was set equal to 1 (Figure 1).

The weights and biases of all connections were randomly

initialized, and then iteratively adjusted during training,

according to Levenberg-Marquardt algorithm, to minimize

the mean square error (the performance function) between

outputs and target, that is given by the difference between 

and y, which is subsequently back-propagated to modify the

weights in order to attain the best fit (3).

sf input( ) = 
1

1 e-
input

+
---------------------

ŷ = f x( ) = Σh sf Σixiwih−θi( )[ ]wh−θh

ŷ

ŷ

Chart 2

Curcuminoid Derivatives
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 (3)

Where tpj is the target value (desired output: y) and opj is the

actual output (predicted target value: ).

All statistical calculations and ANN implementation were

done on personal computer using Minitab (version 15.1.0.0)27

and Matlab28 version 7.0 software respectively.

Results and Discussion

In our previous work, we established the structure-inhibitory

activity (pIC50) of 57 Xanthone and Curcuminoid derivatives

against α-glucosidase using Multiple Linear Regression

analysis (MLR) coupled with genetic algorithms as features

selection approach. Five descriptors were selected as important

factors for α-glucosidase inhibitory. Between these descriptors

there are three, MATS7v, R4e+ and nArOR are weighted by

atomic Van der Waals volumes, atomic Sanderson electro-

negativities and number of aromatic ethers, respectively, and

two descriptors unweighted (Mor15u and H5u) Table 2.

The equation that describes the model relative to five

variables selected using GA-MLR technique is shown with

its statistical parameters (4).

pIC50 = −2.01 + 1.17 MATS7v + 0.485 Mor15u (4)

+ 0.414 H5u + 6.05 R4e+ − 0.480 nArOR

E = 
1

2
---Σp 1=

p
Σ j

J
tpj  – opj( )

2

ŷ

Table 1. Experimental pIC50 values and calculated by ANN and
MLR models for the 57 compounds listed in Chart 1 and Chart 2

Compound Observed pIC50

Predicted pIC50

Multilinear
model

Nonlinear
ANN model

1 -2.371 -2.071 -2.134

2 -2.297 -2.086 -2.306

3 -2.249 -1.812 -2.059

4 -2.238 -2.162 -2.306

5 -2.206 -2.024 -2.065

6 -2.166 -1.974 -2.03

7 -2.143 -2.026 -1.941

8 -2.123 -1.94 -2.03

9 -2.119 -2.06 -2.072

10 -2.114 -2.012 -2.052

11 -2.092 -2.105 -2.089

12 -2.082 -2.139 -2.052

13 -2.063 -2.131 -2.073

14 -2.062 -2.182 -2.131

15 -2.056 -2.218 -2.156

16 -2.045 -2.130 -2.131

17 -2.01 -2.163 -2.155

18 -1.992 -1.609 -1.511

19 -1.961 -2.042 -2.057

20 -1.913 -2.035 -1.511

21 -1.828 -1.707 -1.827

22 -1.823 -1.738 -1.589

23 -1.803 -1.925 -1.694

24 -1.791 -1.724 -1.589

25 -1.724 -1.495 -1.658

26 -1.696 -1.564 -1.578

27 -1.667 -1.571 -1.556

28 -1.618 -2.026 -1.73

29 -1.601 -1.190 -1.612

30 -1.543 -1.589 -1.489

31 -1.504 -1.758 -1.799

32 -1.496 -1.718 -1.337

33 -1.473 -1.744 -1.714

34 -1.444 -1.215 -1.276

35 -1.303 -1.009 -1.149

36 -1.233 -1.288 -1.246

37 -1.167 -1.991 -1.149

38 -0.968 -1.442 -1.184

39 -0.919 -1.401 -1.168

40 -0.903 -1.058 -0.867

41 -0.799 -0.873 -1.168

42 -0.771 -1.052 -0.785

43 -0.763 -0.723 -0.721

44 -1.571 -1.371 -1.489

45 -1.63 -1.231 -1.612

46 -1.362 -1.529 -1.471

47 -1.575 -1.618 -1.553

48 -0.447 -0.694 -0.469

49 -1.672 -1.764 -1.713

50 -1.467 -1.434 -1.471

51 -1.512 -1.236 -1.337

52 -0.415 -0.556 -0.721

53 -1.723 -1.735 -1.713

54 -1.53 -1.479 -1.506

55 -1.338 -1.492 -1.271

56 -0.204 -0.530 -0.224

57 -1.568 -1.384 -1.482

Figure 1. Schematic diagram of artificial neural network used in
this work.

Table 2. Glossary of the descriptors reported

Descriptor symbol Meaning 

MATS7v Moran autocorrelation of lag7 / weighted by 

atomic Van Der Waals volumes. 

Mor15u 3D MoRSE-signal15 / unweighted.

H5u H autocorrelation of lag5 / unweighted.

R4e+ R maximal autocorrelation of lag4 / weighted 

by Sanderson lcectronegativities.

nArOR Number of ethers (aromatic)
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N = 44; R2 = 0.857; S = 0.197; F = 45.53; P < 10−4; 

Q2
cv-loo = 0.815; scv-loo = 0.208; Q2

Pset = 0.66.

Where N is the number of compounds included in the

model, s is the standard deviation of the regression, R2 is the

determinationd coefficient, F is the Fischer ratio, scv-loo and

Q2
cv-loo are the cross-validation standard deviation, and

determination coefficient respectively, Q2
Pset is the external

determination coefficient.

In the current study, an ANN-QSAR model is presented

for pIC50 of 57 xanthone and curcuminoid derivatives against

α-glucosidase enzyme. The networks were generated using

the five descriptors appeared in the MLR model as their

inputs and pIC50 as their output target. Before starting, data

set was separated into three groups: training, validation and

test sets. The training set, consisted of 29 molecules, was

used for the model generation. However the validation set,

consisted of 14 molecules, was used to take care of the

overtraining. The prediction set, consisted of 14 molecules,

was used to evaluate and generalize the generated model.

As can be seen from Figure 2, the above given procedure

ensures that the training, validation, and prediction data sets

have similar data distribution. Where the response histogram

(in the training, validation, and test sets) highlighting that the

entire range of response is covered in the three sets in a way

that is quite well balanced.

The range of the response in the training set is −2.375 to

−0.125 log unit (pIC50 mean = −1.606), while the range of

validation set response is −2.3 to −0.7 log unit (pIC50 mean =

−1.667), and the range of test set response is −2.125 to

−0.375 log unit (pIC50 mean = −1.589).

The ANN architecture used in this study is made up of

three layers: input layer, hidden layer, and output layer com-

prising five neurons (MATS7v, Mor15u, H5u, R4e+, and

nArOR) and a bias in the input layer and one output neuron

pIC50. Signals are sent from the input layer through the

hidden layer and finally to the output layer in a feed-forward

manner. 

This is followed by readjustment of weights according to

the prediction error. The connection weights were randomly

initialized and modified during the training process using the

backpropagation algorithm. 

One major problem in neural networks is how to deter-

mine the number of neurons in the hidden layer. Though

there is no rigorous rule to rely on,29,30 some authors31 have

proposed a parameter ρ, to determine the number of hidden

units,31 defined in Eq. (5). 

A second practical way is to use a trial and error procedure

(used in this work). The approach consists in using either a

bottom-up strategy, starting with too few neurons and then

adding more if need be, or a top-down. The number of

hidden neurons was optimized from 1 to 12 by this ap-

proach. The results are depicted respectively in Table 3 and

Figure 3. 

During training the weights and biases of the network are

iteratively adjusted to minimize the performance function

MSE (mean square error) between the network outputs and

the target outputs for the training set. As shown in Table 2,

this fitness function yields models which are optimal for the

ρ =
Number of data points in the training set

(5)
Number of connections in the network

Figure 2. Plot of the distribution of pIC50 values for training,
validation, and prediction sets.

Table 3. Determination coefficients values with different numbers
of hidden neurons

N° Neurons MSE R2tr R2val R2
Pset

1 0.028 0.882 0.755 0.769

2 0.024 0.893 0.835 0.769

3 0.013 0.945 0.748 0.760

4 0.002 0.986 0.702 0.787

5 0.008 0.927 0.835 0.728

6 0.000 0.994 0.726 0.832

7 0.008 0.947 0.783 0.803

8 0.000 1.000 0.755 0.731

9 0.004 0.941 0.869 0.867

10 0.003 0.960 0.843 0.711

11 0.003 0.962 0.766 0.783

12 0.000 0.990 0.712 0.704

MSE: mean square error; R2tr, R2val, R2
Pset: a determination coefficient

for training, validation, and prediction sets respectively.

Figure 3. Influence of the number of neurons in hidden layer on
R2 (for training, validation, and prediction sets).
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training data (e.g. for ANN 5-8-1: R²tr=1 with MSE=0) but

they do not have good predictive abilities (R²val and R²test

are respectively 0.755 and 0.731) with the same ANN archi-

tecture. For this reason, we used the validation and extern

determination coefficients as a relative measure of the pre-

dictive performance, which are defined as the degree of

correlation between the predicted and experimental pIC50

values for validation and predictions sets respectively. As

shown in the Figure 3, the optimal model corresponds to 9

neurons in the hidden layer, where the determination

coefficient for validation set and prediction set go above

86%. This non linear model (5-9-1) is able to account 94.1%

of the variance of training set by the five descriptors with

0.004 as MSE value.

The residuals of the ANN calculated values of the α-

glucosidase inhibitory are plotted against the experimental

pIC50 values in Figure 4. On the both sides the distribution of

the residuals on zero line indicates that no systematic error

exists in the constructed ANN-QSAR model. 

To show that the results obtained by the ANN model were

not due to chance correlation, a randomizing experiment was

performed. The dependent variables pIC50 (TSET, VSET,

and PSET) were randomly shuffled keeping the ANN para-

meters (weights, biases, and input matrix) fixed (Supple-

mentary data). This operation is repeated ten times and the

results are depicted in Figure 5. The results obtained ex-

pressed by the low values of R2 (for training, validation, and

prediction sets) show that the best model was extremely

unlikely to have been found because of chance correlation

effects or structural dependency of the training set.

In comparison of statistical results, obtained by ANN

model and same obtained with MLR model (Table 4), we are

plotted, the experimental versus calculated values of pIC50,

obtained by ANN and MLR models, are plotted (for the

training and prediction sets) Figure 6. 

Based on the statistical results given by linear and non-

linear models and according to the results shown in Figure 6

we observe that the ANN model has a reliability and

predictive capability significantly better than those given by

the MLR model. The standard errors of calculation are lower

and the determination coefficients are higher with ANN than

with MLR. We therefore consider that the nonlinear ap-

proach is best suited to analyze the structure-inhibitory

activity relationship of Xanthone and Curcuminoid derivatives

Figure 4. Residual versus experimental values of pIC50 for non-
linear model.

Figure 5. Determination coefficients for validation and test values
against training values in y-randomization test.

Table 4. Determination coefficients and root means squares errors
obtained by MLR and ANN models

MLR ANN

RMSE R2 RMSE R2

Training set 0.156 0.857 0.129 0.941

Prediction set 0.194 0.660 0.188 0.867

Figure 6. Calculated versus experimental pIC50 for α-glucosidase
inhibition by xanthone and curcuminoide derivatives, obtained by
ANN and MLR.
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against α-glucosidase. 

Analysis of Descriptor’s Contribution in ANN Model:

As a final step, we studied the effect of the five descriptors

on the α-glucosidase inhibitory. For this purpose and for

each descriptor, we removed the descriptor under study from

the input matrix and reinitialized the model keeping the

weights matrix fixed, then we calculate the mean of the

absolute deviation values Δmi between the observed and

predicted value for all compounds. Finally, the contribution

Ci of each descriptor is given by (6).32-34

(6)

The results are depicted in Table 5 and Figure 7. As shown

in Table 5, the five descriptors are ordered according to their

contribution as follow: MATS7v > Mor15u > R4e+ > H5u >

nArOR. As in MLR model,15 the descriptor coded by Van

der Waals volume exerts the major effect on the α-gluco-

sidase inhibitory. In second and third order we find two

descriptors: Mor15u and R4e+belonging to 3D-MoRSE and

2D-autocorrelation blocks respectively. The last two de-

scriptors (H5u, nArOR) have minor contribution against α-

glucosidase inhibitory in comparison with MATS7v Figure 7.

Conclusion

The aim of this study was to present another approach than

the regression analysis to develop a QSAR; therefore the

five descriptors obtained with GA-MLR method were used

in ANN. Our study demonstrated that the three layer back-

propagation NN provided us a promising QSAR model for

α-glucosidase inhibitors. Based on the ANN results, ANN

model bring more reliable statistics according to good pre-

dictive determination coefficients, and the five descriptors

(MATS7v, Mor15u, H5u, R4e+, and nArOR) matched well

with the activity of interest; this means that the descriptors

used in MLR model include non-linear relationships.

The contributions of descriptors in the α-glucosidase

inhibitory activity are in accordance with those obtained by

MLR analysis, where the effect of Van der Waals volume is

predominant. 
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