DOI QR코드

DOI QR Code

Evaluation of Characteristics of G-class Cement for Geothermal Well Cementing

지열 발전정 시멘팅을 위한 G-class 시멘트 특성 평가에 관한 연구

  • Won, Jongmuk (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Jeon, Jongug (Korea Refrigeration & Air-conditioning Assessment Center) ;
  • Park, Sangwoo (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Choi, Hangseok (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 원종묵 (고려대학교 건축.사회환경공학부) ;
  • 전종욱 (한국냉동공조인증센터) ;
  • 박상우 (고려대학교 건축.사회환경공학부) ;
  • 최항석 (고려대학교 건축.사회환경공학부)
  • Received : 2013.01.22
  • Accepted : 2013.05.10
  • Published : 2013.05.31

Abstract

The G-class cement is commonly used in practice for geothermal well cementing in order to protect a steel casing that is designed to transport hot water/steam from deep subsurface to ground surface during operating a geothermal power plant. In order to maintain optimal performance of geothermal wells, physical properties of the cementing material should be satisfactory. In this paper, relevant factors (i.e., groutability, uniaxial compression strength, thermal conductivity and free fluid content) of the G-class cement were experimentally examined with consideration of various water-cement (w/c) ratios. Important findings through the experiments herein are as follows. (1) Groutability of the G-class cement increases by adding a small dose of retarder. (2) There would be a structural defect caused when the w/c ratio is kept higher in order to secure groutability. (3) Thermal conductivity of the G-class cement is small enough to prevent heat loss from hot steam or water to the outer ground formation during generating electricity. (4) The G-class cement does not form free water channel in cementing a geothermal well. (5) The Phenolphthalein indicator is applicable to the distinction of the G-class cement from the drilling mud.

G-class 시멘트는 지열발전소 가동 시에 지열정에서 고온의 지열수나 증기를 심부에서 지표면까지 이동시키는 케이싱을 보호하는 시멘팅 재료로서 이용된다. 지열정을 통한 원활한 지열발전을 위해서는 시멘팅 재료의 물리적 특성들이 만족되어야 한다. 본 연구에서는 G-class 시멘트를 지열정 시멘팅 재료로서의 중요한 물리적 특성인 유동성, 일축압축강도, 열전도도, free fluid 함유율(Free fluid content) 등을 평가하기 위해, 다양한 물/시멘트 비 조건에서 실내실험을 수행하였다. G-class 시멘트에 대한 물리적 특성 평가를 통해 다음과 같은 결론을 도출하였다. (1) G-class 시멘트의 유동성은 소량의 응고지연제(retarder)를 첨가하여 증가 시킬 수 있다. (2) 유동성 확보를 위해 물/시멘트 비를 높일 경우, 일축압축강도가 감소하여 지열정의 구조적 문제를 야기할 수 있다. (3) G-class 시멘트의 열전도도는 지열정 가동 시에 지열정에서 외부 지반으로의 열손실이 거의 없을 정도로 낮게 평가되었다. (4) G-class 시멘트를 시멘팅 재료로 이용할 경우, 블리딩(bleeding) 가능성은 매우 낮은 것으로 판단된다. (5) 페놀프탈레인 지시약은 지열정 시공시 지표면에서 시추용 이수와 G-class 시멘트를 구분하기 위해 적합할 것으로 판단된다.

Keywords

References

  1. API specification 10A (2009), "Specification for Cements and Materials for Well Cementing", American Petroleum Institute, pp. 1-5.
  2. Aristodimos, J., Philippacopoulos, A.J., and Berndt, M.L. (2002), "Structural analysis of geothermal well cements", Geothermics, Vol.31, pp.657-676. https://doi.org/10.1016/S0375-6505(02)00029-9
  3. Edwards, L.M., Chilingar, G.V., Rieke III, H.H., and Fertl, W.H. (1982), Handbook of Geothermal Energy, Gulf Publishing Company, USA.
  4. Hans-Dieter, V. and Rudiger, S. (2003), "Influence of Temperature on Thermal Conductivity, Thermal Capacity and Thermal Diffusivity for Different Types of Rock", Physics and Chemistry of the Earth, Vol.28, Issues 9-11, pp.499-509. https://doi.org/10.1016/S1474-7065(03)00069-X
  5. Han, J., Han, H., and Han, C. (2010), Geothermal Energy, Hanrimwon.
  6. IGSHPA (2000), "Grouting for Vertical Geothermal Heat Pump Systems : Engineering Design and Field Procedures Manual", International Ground Source Heat Pump Association, Still water.
  7. Jeon, J., Won, J., and Choi, H. (2012), "An Experimental Comparison of the Fluidity of G-class cement with Portland cement", Korea Society of Geothermal Energy, Vol.8, No.2, pp.1-8.
  8. Korea geothermal research society (2008), Renewable Energy R&D Strategy 2030 Series 8 : Geothermal Energy, KEMCO(Korea Energy Management Corporation)/Renewable Energy Center.
  9. Lee, C. (2012), Performance of Ground Heat Exchangers for Civil Infrastructures, Ph.D. thesis, Korea University, Seoul, South Korea.
  10. Park, M. (2011), Study on Thermal and Mechanical Characteristics of Cement-based Grout for Closed-loop Vertical Ground Heat Exchanger, Master thesis, Korea University, Seoul, South Korea.
  11. Philippacopoulos, A. J. and Berndt, M. L. (2000), "Charactization and modeling of cements for geothermal well casing remediation", Geothermal Resource Council Transaction, Vol.24, pp.81-86.
  12. Roni, G., Cristiane, M., Kleber, T., Andre, L. M., and Alex, W. (2004), "On the Rheological Parameter Governing Oilwell Cement Slurry Stability", Annual Transactions of the Nordic Rheology Society, Vol.12, pp.85-91.
  13. Santoyo, E., Garcia, A., Morales, J. M., Constreras, E., and Espinosaparedes, G. (2001), "Effective thermal conductivity of Mexican geothermal cementing systems in the temperature range from $28^{\circ}C$ to $200^{\circ}C$", Applied Thermal Engineering, Vol.21, pp.1799-1812. https://doi.org/10.1016/S1359-4311(01)00048-5
  14. Takegoshi, E., Imura, S., Hirasawa, Y., and Takenaka, T. (1982), "A method of measuring the thermal conductivity of solid materials by transient hot wire method of comparison", Bulletin of the Japan Society of Mechanical Engineers, JSME, Vol.25, pp.395-402. https://doi.org/10.1299/jsme1958.25.395
  15. Toshifumi, S. (2007), "Advanced Cements for Geothermal Wells", Brookhaven National Laboratory, Report 2007, USA.
  16. Vosteen, H. D. and Schellschmidt, R. (2003), "Influence of temperature on thermal conductivity, thermal capacity and thermal diffucivity for different types of rock", Physics and Chemistry of the Earth, Vol.28, pp.499-509. https://doi.org/10.1016/S1474-7065(03)00069-X
  17. Yoon, W., Song, Y., Lee, T., Kim, K., Min, K., Cho, Y., and Jeon, J. (2011), "Research Background and Plan of Enhanced Geothermal System Project for MW Power Generation in Korea", Tunnel & Underground Space, Vol.21, No.1, pp.11-19.