DOI QR코드

DOI QR Code

Phenolics Content and Antioxidant Activity of Sprouts in Several Legume Crops

두과작물 새싹의 폴리페놀 함량 및 항산화성 비교

  • Chon, Sang-Uk (EFARINET Co. Ltd., BI Center, Chosun University) ;
  • Kim, Dong-Kwan (Jeonnam Agricultural Research and Extension Services) ;
  • Kim, Young-Min (Dongeuinara Co. Ltd., Biotechnology Industrialization Center, Dongshin University)
  • 천상욱 (광주광역시 조선대학교 BI센터 (주)이파리넷) ;
  • 김동관 (전라남도 나주시 전남농업기술원) ;
  • 김영민 (전라남도 나주시 노안면 동신대 BIC센터 동의나라(주))
  • Received : 2012.10.04
  • Accepted : 2013.02.15
  • Published : 2013.04.30

Abstract

The study was conducted to determine the content of phenolics and flavonoids, antioxidant activity and antioxidant enzyme activity for the extract from 7 days old sprouts of cowpea (cv. "Seowon"), mungbean (cv. "Owool") and soybean (cv. "Pungsannamulkong"). Sprout length and weight of soybean sprouts were higher than those of cowpea and mungbean sprouts. Total phenolics content [mg ferulic acid equivalents (FAE) $kg^{-1}$ DW] was highest in soybean sprout extracts (82.2 mg $kg^{-1}$), followed by cowpea (32.2 mg $kg^{-1}$) and mungbean (24.5 mg $kg^{-1}$) sprout extracts (p < 0.05). The result of total flavonoid level [mg rutin equivalents $kg^{-1}$ DW] had same tendency to the total phenolics, showing lower amounts. The antioxidant activity of the methanol extracts from all the plant dose-dependently increased. DPPH (1,1-diphenyl-2-picryl hydrazyl radical) free radical scavenging activity was higher in cowpea (44%) and mungbean (42%) sprouts than in soybean sprouts (25%). Among antioxidant enzymes, APX and POX activities were highest in cowpea sprouts and CAT and SOD activities in soybean sprouts. The results showed that total phenolics content ($r^2$ = 0.5320 ~ 0.9032) and total flavonoids level ($r^2$ = 0.4672 ~ 0.9380) were highly correlated with antioxidant or with antioxidant enzyme activity, and that the level and activity of biologically active substances were different depending on plant species.

대두, 녹두, 및 동부 종자로 7일간 재배된 새싹나물의 생육, 폴리페놀 함량, 플라보노이드 함량, 항산화성 및 항산화효소 활성 차이를 검토하였다. 작물별 새싹나물의 총 신장은 녹두와 콩이 동부보다 유의적으로 컸으며 생체중은 오히려 콩과 동부가 녹두보다 유의적으로 높게 나타났다. Folin-Denis방법에 따른 총 페놀 함량은 콩나물의 메탄올 추출물(82.2 mg $kg^{-1}$)이 가장 높았으며, 그 다음이 동부나물(32.2 mg $kg^{-1}$), 녹두나물(24.5 mg $kg^{-1}$) 순으로 나타났다(p < 0.05). 한편, 총 플라보노이드 함량은 총 페놀 함량과 같은 경향을 보였으나 더 낮은 함량이 검출되었다. DPPH 라디컬 소거능은 추출물 농도가 증가할수록 높은 활성을 보였으며 전체적으로 낮은 활성이었으나 동부와 녹두 추출물(44와 42%)이 콩나물(25%)보다 비교적 높은 활성을 보였다. 항산화효소 활성은 APX와 POX활성은 동부가 가장 높았고 그 다음이 녹두, 콩 순으로 나타났고, CAT와 SOD 활성은 콩나물이 동부와 녹두나물보다 높게 나타났다. 따라서 본 연구는 총 페놀 함량($r^2$ = 0.53 ~ 0.90)과 총 플라보노이드 함량($r^2$ = 0.47 ~ 0.94)은 항산화성과 항산화효소 활성에 높은 연관성이 있으며, 그 함량과 활성은 작물별로 다르게 나타남을 확인하였다.

Keywords

References

  1. Abdullah, A. and R.E. Baldwin. 1984. Mineral and vitamin contents of seeds and sprouts of newly available smallseeded soybeans and market samples of mungbeans. J. Food Sci. 49:656-657. https://doi.org/10.1111/j.1365-2621.1984.tb12495.x
  2. Anderson, M.D., T.K. Prasad and C.R. Stewart. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109:1247‐1257. https://doi.org/10.1104/pp.109.4.1247
  3. Banwart, W.L., P.M. Porter, T.C. Granato and J.J. Hassett. 1985. HPLC separation and wavelength area ratios of more than 50 phenolic acids and flavonoids. J. Chem. Ecol. 11:383‐395. https://doi.org/10.1007/BF01411424
  4. Bau, H.M., C. Villaume, J.P. Nicolas and L. Mejean. 1997. Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. J. Sci Food Agric. 73(1):1-9. https://doi.org/10.1002/(SICI)1097-0010(199701)73:1<1::AID-JSFA694>3.0.CO;2-B
  5. Beyer, W.F. and I. Fridovich. 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 161:559‐566. https://doi.org/10.1016/0003-2697(87)90489-1
  6. Blois, M.S. 1958. Antioxidant determinations by use of a stable free radical. Nature 26:1199‐1200.
  7. Blume, E. and J.W. McClure. 1980. Developmental effects of Sandoz 6706 on activities of enzymes of phenolic and general metabolism in barley shoots grown in the dark or under low or high intensity light. Plant Physiol. 65:238‐244. https://doi.org/10.1104/pp.65.2.238
  8. Bowler, C., M. Van Montagu and D. Inze. 1992. Superoxide dismutases and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83‐116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  9. Bradford, M.M. 1976. "Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding", Anal. Biochem. 72:248‐254. https://doi.org/10.1016/0003-2697(76)90527-3
  10. Branca, F., and S. Lorenzetti. 2005. Health effects of phytoestrogen. Forum Nutr. 57:100‐111.
  11. Cai, R., N.S. Hettiarachchy and M. Jalaluddin. 2003. Highperformance liquid chromatography determination of phenolic constituents in 17 varieties of cowpeas. J. Agr. Food Chem. 51:1623‐1627. https://doi.org/10.1021/jf020867b
  12. Chen, G.X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30:987‐998.
  13. Chen, L.H., C.E. Well and J.R. Fordham. 1975. Carbohydrate analysis : A practical approach. IRL press Ltd., Oxford, 국가명. p. 23.
  14. Chung, I.M., K.H. Kim, D.K. Song and B.H. Kang. 1999. Physiological responses of rice (Oryza sativa L.) varieties to ozone. Kor. J. Environ. Agr. 18:11‐17 (in Korean).
  15. Danisova, C., E. Holotnakova, B. Hozovaand V. Buchtova. 1994. Effect of germination on a range of nutrients of selected grain and legumes. Acta Alimentaria 23:287-298.
  16. Davies, K.J.A. 1995. Oxidative stress: The paradox of aerobic life, p. 1‐32. In C. Rice‐Evans, Halliwell B. and G.G. Lunt (eds.), Free radicals and oxidative stress: Environment, drugs, and food additives. Biochem. Soc. Symp. 61, Portlant Press, London, UK.
  17. Egley, G.H., R.N. Paul, K.C. Vaughn and S.O. Duke. 1983. Role of peroxidase in the development of waterimpermeable seed coats in Sida spinosa L. Plant 157:224‐232. https://doi.org/10.1007/BF00405186
  18. Frota, K.M.G., S. Mendonca, P.H.N. Saldiva, R.J. Cruz and J.A.D. Ageas. 2008. Cholesterol‐lowering properties of whole cowpea seed and protein isolate in hamsters. J. Food Sci. 73:235‐240.
  19. Gray, J.I. and L.R. Jr. Dugan. 1975. Inhibition of N‐nitrosamine formation in model food systems. J. Food Sci. 40:981‐984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  20. Gutierrez‐Uribe, J.A., I. Romo‐Lopez and S.O. Serna‐Saldívar. 2011. Phenolic composition and mammary cancer cell inhibition of extracts of whole cowpeas (Vigna unguiculata) and its anatomical parts. J. Funct. Foods 3:290‐297. https://doi.org/10.1016/j.jff.2011.05.004
  21. Hofsten, B. 1979. Legume sprout as a source of protein and other nutrients. J. Am. Oil Chemists' Soc. 56:382‐392. https://doi.org/10.1007/BF02671509
  22. Jeong, S.J., T.H. Kang, E.B. Ko and Y.C. Kim. 1998. Flavonoids from the seeds of Phaseolus radiatus. Kor. J. Pharmacogn. 29(4):357‐259 (in Korean).
  23. Kang, S.J., J.Y. Oh and J.D. Jung. 1999. Changes of antioxidant enzyme activities in leaves of lettuce exposed to ozone. J. Kor. Soc. Hort. Sci. 40:541‐544(in Korean).
  24. Kim, B.J., J.H. Kim, Y. Hea and H.P. Kim. 1998. Antioxidant and anti‐inflammatory activities of the mungbean. Cos. Toilet. Mag. 113:71‐74.
  25. Kim, D.K., S.C. Jeong, S. Gorinstein and S.U. Chon. 2012. Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts. Plant Foods Hum. Nutr. 67:71-75. https://doi.org/10.1007/s11130-011-0273-x
  26. Kim, E.H., S.H. Kim, J.I. Chung, H.Y. Chi, J.A. Kim and I.M. Chung. 2006. Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. Eur. Food Res. Technol. 222:201-208. https://doi.org/10.1007/s00217-005-0153-4
  27. Kim, J.G., S.K. Kim and J.S. Lee. 1988. Fatty acid composition and electrophoretic patterns of protein of Korean soybeans. Korean J. Food Sci. Technol. 20:263‐271 (in Korean).
  28. Kim, S.D., S.H. Kim and E.H. Hong. 1993. Composition of soybean sprout and its nutritional value. J. Korean Soybean Res. 1:1‐9 (in Korean).
  29. Krygier, K., F. Sosulski and H. Lawrence. 1982. Free, esterified and insoluble‐bound phenolic acids. 1. Extraction and purification procedure. J. Agric. Food Chem. 30:330‐334. https://doi.org/10.1021/jf00110a028
  30. Lister, C.E., J.E. Lancaster, K.H. Sutton and J.R.L. Walker. 1994. Developmental changes in the concentration and composition of flavonoids in skin of a red and a green apple cultivar. J. Sci. Food and Agric. 64:155‐161. https://doi.org/10.1002/jsfa.2740640204
  31. Madhujith, T., M. Naczk and F. Shahidi. 2004. Antioxidant activity of common beans (Phaseolus vulgaris L.). J. Food Lipids 11:220-233. https://doi.org/10.1111/j.1745-4522.2004.01134.x
  32. Mishra, N.P., R.K. Mishra and G.S. Singhal. 1993. Changes in the activities of anti‐oxidant enzymes during exposure of intact what leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol. 102:903‐910. https://doi.org/10.1104/pp.102.3.903
  33. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22:867‐880.
  34. Park, I.K. and S.D. Kim. 2003. Sugar and free amino acid content of chitosan‐treated soybean sprouts. J. Chitin Chitosan 8:105‐110.
  35. Salunke, B.K., H.M. Kotkar, P.S. Mendki, S.M. Upasani and V.L. Maheshwari. 2005. Efficacy of flavonoids in controlling Callosobruchus chinensis (L.) (Coleoptera: Bruchidae), a post‐harvest pest of grain legumes. Crop Prot. 24:888-893. https://doi.org/10.1016/j.cropro.2005.01.013
  36. SAS (Statistical Analysis Systems) Institute. 2000. SAS/STAT user's guide. Version 7. Electronic Version. Cary, NC, USA.
  37. Siddhuraju, P. and K. Becker. 2007. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extracts. Food Chemistry 101:10-19. https://doi.org/10.1016/j.foodchem.2006.01.004
  38. Singleton, V.L. and J.A. Rossi. 1965. A colorimetry of total phenolics with phosphomolybdic‐phosphotungstic acid reagents. American J. Enol. Viticult. 16:144‐158.
  39. Sowmya, P. and P. Rajyalakshmi. 1999. Hypocholesterolemic effect of germinated fenugreek seeds in human subjects. Plant Foods Hum. Nutr. 53:359-365. https://doi.org/10.1023/A:1008021618733
  40. 박혜원. 1995. 녹두이용 음식의 유래와 그 조리 과학성. 국민영양 95(4):40.
  41. 배효원, 유태종. 1967. 대두 발아중의 각 기관 단백질 및 자엽 RNA 변동에 관한 연구. 한국농화학회지 8:81‐86.
  42. 신효선. 1974. 대두 발아 중 지질대사에 관한 연구. 제1보 조지방량 및 지질성분의 변화에 관하여. 한국농화학회지 17(4):240‐245.
  43. 이성우. 1957. 숙주의 영양생장과 한국적 조리에 의한 비타민 C의 소장에 관한 연구. 대한가정의학회지 3:357.
  44. 조재영. 1990. 사정 전작. 향문사, 서울, 한국. p. 535.

Cited by

  1. Optimization of Extraction Conditions of Polyphenolic Compounds from Amaranth Leaf using Statistically-based Optimization vol.54, pp.3, 2016, https://doi.org/10.9713/kcer.2016.54.3.315
  2. Optimization of Hot-water Extraction Conditions of Polyphenolic Compounds from Lipid Extracted Microalgae vol.54, pp.3, 2016, https://doi.org/10.9713/kcer.2016.54.3.310
  3. Evaluation of crude protein, crude oil, total flavonoid, total polyphenol content and DPPH activity in the sprouts from a high oleic acid soybean cultivar vol.43, pp.5, 2016, https://doi.org/10.7744/kjoas.20160075
  4. Effects of Helianthus tuberosus Powder on the Quality Characteristics and Antioxidant Activity of Rice Sponge Cakes vol.29, pp.2, 2014, https://doi.org/10.7318/KJFC/2014.29.2.195
  5. Growth Characteristics of Sprouts and Changes of Antioxidant Activities in Common Bean (Phaseolus vulgaris L.) with Cultivated Temperature vol.59, pp.2, 2014, https://doi.org/10.7740/kjcs.2014.59.2.201
  6. 클로렐라 처리에 의한 유기농 콩나물 생육촉진 및 항산화 능력 증진효과 vol.23, pp.4, 2013, https://doi.org/10.11625/kjoa.2015.23.4.939
  7. 새싹 더덕의 항산화 활성 vol.32, pp.6, 2019, https://doi.org/10.9799/ksfan.2019.32.6.630
  8. Investigation of suitable seed sizes, segregation of ripe seeds, and improved germination rate for the commercial production of hemp sprouts ( CANNABIS SATIVA L.) vol.100, pp.7, 2020, https://doi.org/10.1002/jsfa.10294
  9. Antioxidant and Anti-Inflammatory Effects of Merin Beet Sprout Extract vol.50, pp.9, 2013, https://doi.org/10.3746/jkfn.2021.50.9.921