DOI QR코드

DOI QR Code

Estimation of the Shadow Price of Carbon Dioxide Emissions, the Potential Reduction, and Substitution Possibility for fuels in the Chinese Fossil-fueled Power Generation Sector

중국 화력발전산업의 CO2 암묵가격 및 잠재감축량, 연료에 대한 대체가능성 분석

  • Jin, Yingmei (Department of International Trade, Inha University) ;
  • Lee, Myunghun (Department of International Trade, Inha University)
  • 김영미 (인하대학교 국제통상학부) ;
  • 이명헌 (인하대학교 국제통상학부)
  • Received : 2012.10.22
  • Accepted : 2013.02.15
  • Published : 2013.03.31

Abstract

China, the world's largest $CO_2$ producer, is likely to be obligated to reduce greenhouse gas emissions under the post-Kyoto protocol. This paper estimates a Shephard input distance function for the Chinese fossil-fueled power generation sector to measure the shadow price of $CO_2$ emissions, technical efficiency, and indirect Morishima elasticities of substitution between inputs. Empirical results show that, on average, it costs approximately 3.2 US dollars per year to reduce $CO_2$ emissions by one ton over the period 1981-2009. This finding indicates that Chinese power sector is expected to benefit from selling emission permits to other countries such as Korea and Japan, given that our estimate for China is lower than the ones previous literatures estimated for the power sector in these countries. The maximum attainable average $CO_2$ reduction potential amounts to approximately 25 million tons per year by improving technical efficiency. Capital is substitutable with both coal and oil and capital is relatively more readily substituted for these fuels.

본 논문에서는 향후 포스트 교토협약에서 온실가스 감축의무국으로 분류될 가능성이 높은 세계 최대의 $CO_2$ 배출국 중국의 화력발전산업을 대상으로 Shephard 투입물거리함수를 추정하여 $CO_2$ 암묵가격과 기술효율성, 그리고 투입요소 간 간접 모리시마 대체탄력성을 측정한다. 1981-2009년 기간 동안 $CO_2$ 1톤을 감축하는 데 연간 평균 약 3.2달러의 비용이 드는 것으로 나타났다. 이는 한국, 일본의 발전 산업에 대한 $CO_2$ 암묵가격 추정치보다 낮은 수준으로서 향후 이들 나라와 배출권 거래가 이루어질 경우 배출권 판매를 통한 경제적 이득이 예상된다. 기술효율성의 향상으로 달성할 수 있는 최대 $CO_2$ 잠재 감축량은 연간 평균 약 2천 5백만톤에 이르는 것으로 산정되었다. 석탄과 석유 등의 연료와 자본은 상호 대체가능하며 자본이 연료를 더 용이하게 대체하는 것으로 나타났다.

Keywords

References

  1. 이명헌, "국내 발전산업의 원자력-화력 자본스톡에 대한 암묵가격 추정 및 대체가능 성 분석", <환경정책>, 제20권 2호, 2012, 1-18.
  2. 이명헌.강상목, "$SO_2$에 대한 배출권거래의 경제적 실익 분석-한국 화력발전소를 대상으로", <국제경제연구>, 제8권 제2호, 2002, 171-190.
  3. Aigner, D. and S. Chu, "On Estimating the Industry Production Function," American Economic Review, Vol. 58, 1968, pp. 826-839.
  4. Blackorby, C. and R. R. Russell, "Will the Real Elasticity of Substitution Please Stand Up? (A Comparison of the Allen/Uzawa and Morishima Elasticities)," American Economic Review, Vol. 79, 1989, pp. 882-888.
  5. Coggins, J. S. and J. R. Swinton, "The Price of Pollution: A Dual Approach to Valuing $SO_2$ Allowance," Journal of Environmental Economics and Management, Vol. 30, 1996, pp. 58-72. https://doi.org/10.1006/jeem.1996.0005
  6. Fare, R., C. A. K. Lovell, and S. Yaisawarng, "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," Review of Economics and Statistics, Vol. 75, 1993, pp. 374-380. https://doi.org/10.2307/2109448
  7. Fare, R. and S. Grosskopf, "A Distance Function Approach to Price Efficiency," Journal of Public Economics, Vol. 43, 1990, pp. 123-126. https://doi.org/10.1016/0047-2727(90)90054-L
  8. Fare, R., S. Grosskopf, C. A. K Lovell, D. Noh, and W. Weber, "Characteristics of a Polluting Technology: Theory and Practice," Journal of Econometrics, Vol. 126, 2005, pp. 469-492. https://doi.org/10.1016/j.jeconom.2004.05.010
  9. Farrell, M. J., "The Measurement of Productive Efficiency," Journal of Royal Statistical Society, Vol. 120, 1957, pp. 253-290. https://doi.org/10.2307/2343100
  10. Grosskopf, S., K. Hayes, and J. Hirschberg, "Fiscal Stress and Production of Public Safety: A Distance Function Approach," Journal of Public Economics, Vol. 57, 1995, pp. 277-296. https://doi.org/10.1016/0047-2727(94)01445-T
  11. Hailu, A. and T. S. Veeman, "Environmentally Sensitive Productivity Analysis of the Canadian Pulp and Paper Industry, 1959-1994: An Input Distance Function Approach," Journal of Environmental Economics and Management, Vol. 40, 2000, pp. 189-210. https://doi.org/10.1006/jeem.1999.1122
  12. Halvorsen, R. and T.R. Smith, "Substitution Possibilities for Unpriced Natural Resources: Restricted Cost Function for the Canadian Metal Mining Industry," Review of Economics and Statistics, Vol. 68, 1986, pp. 398-405. https://doi.org/10.2307/1926016
  13. Jacobsen, S. E., "On Shephard's Duality Theorem," Journal of Economic Theory, Vol. 4, 1972, pp. 458-464. https://doi.org/10.1016/0022-0531(72)90133-0
  14. Kwon, OS and Won-Cheol Yun, "Estimation of the Marginal Abatement Costs of Aairborne Pollutants in Korea' Power Generation Sector," Energy Economics, Vol. 21, 1999, pp. 547-560. https://doi.org/10.1016/S0140-9883(99)00021-3
  15. Matsushita, K. and F. Yamane, "Pollution from the Electric Power Sector in Japan and Efficient Pollution Reduction," Energy Economics, Vol. 34, 2012, pp. 1124-1130. https://doi.org/10.1016/j.eneco.2011.09.011
  16. Park, H. and J. Lim, "Valuation of Marginal $CO_2$ Abatement Options for Electric Power Plants," Energy policy, Vol. 37, 2009, pp. 1834-1841. https://doi.org/10.1016/j.enpol.2009.01.007
  17. Shephard, R. W., Theory of Cost and Production Functions, Princeton: Princeton University Press, 1970.
  18. Wang, Q., Q. Cui, D. Zhou, and S. Wang, "Marginal Abatement Costs of Carbon Dioxide in China: A Nonparametric Analysis," Energy Procedia, Vol. 5, 2011, pp. 2316-2320. https://doi.org/10.1016/j.egypro.2011.03.398
  19. Wei, C., J. Ni, and L. Du, Regional Allocation of Carbon Dioxide Abatement in China. China Economic Review, Vol. 23, 2012, pp. 552-565. https://doi.org/10.1016/j.chieco.2011.06.002