DOI QR코드

DOI QR Code

Study of the Characteristics of Low-Temperature Prepared TiO2 Paste for Dye-sensitized Solar Cells

저온소성 TiO2 페이스트를 이용한 염료감응 태양전지의 특성 연구

  • Jung, You-Ra (Department of Electrical Engineering, Chonnam National University) ;
  • Jin, En Mei (Department of Electrical Engineering, Chonnam National University) ;
  • Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
  • Received : 2013.04.20
  • Accepted : 2013.04.24
  • Published : 2013.05.01

Abstract

In this paper, we have developed a low temperature process to make two type of paste by using $TiO_2$ nanoparticles(P25). The interconnections between substrate and $TiO_2$ films or link between particles of free-binder paste(FP1, FP2, FP3) is very poor. Therefore, the Titanium(IV) isopropoxide was added to the TP paste to improve the interconnection. Electron transport time (${\tau}_t$) and recombination time (${\tau}_r$) are analyzed by IMPS (intensity-modulated photocurrent spectroscopy) and IMVS(Intensity-modulated photovoltage spectroscopy). In the results, ${\tau}_t$ of TP paste based DSSCs (about $4.3{\times}10^{-3}$) is faster than other samples. ${\tau}_r$ is longer from $2.7{\times}10^{-2}$ s of FP2 to $3.0{\times}10^{-2}$ s of TP. A solar conversion efficiency (DSSCs) of TP is 3.54% for an incident solar energy of 100 mW $cm^{-2}$(meanwhile, 2.70% for DSSCs with FP2). The conversion efficiency is increased by 1.3 times.

Keywords

References

  1. A. R. Park, E. M. Jin, and H. B. Gu, J. KIEEME, 25, 315 (2012).
  2. G. O. Kim and K. S. Ryu, Korean Chem. Soc., 33, 469 (2012). https://doi.org/10.5012/bkcs.2012.33.2.469
  3. X. G. Zhao, E. M. Jin, and H. B. Gu, J. KIEEME, 24, 427 (2011).
  4. E. M. Jin, X. G. Zhao, J. Y. Park, and H. B. Gu, Nano. Res. Lett., 7, 97 (2012). https://doi.org/10.1186/1556-276X-7-97
  5. K. K. Kim, G. W. Lee, K. C. Yoo, D. Y. Kim, J. K. Kim, N. G. Park, Journal of Photochemistry and Photobiology A: Chemistry, 204, 144 (2009). https://doi.org/10.1016/j.jphotochem.2009.03.008
  6. Y. Wang, Sol. Energ. Mat. Sol. C., 93, 1167 (2009). https://doi.org/10.1016/j.solmat.2009.01.009
  7. H. Zhu, J. Wei, K. Wang, and D. Wu, Sol. Energ. Mat. Sol. C, 93, 1461 (2009). https://doi.org/10.1016/j.solmat.2009.04.006
  8. F. Pichot, J. R. Pitts, and B. A. Gregg, Langmuir, 16, 5626 (2000). https://doi.org/10.1021/la000095i
  9. D. Zhang, T. Yoshida, and H. Minoura, Adv. Mater., 15, 814 (2003). https://doi.org/10.1002/adma.200304561
  10. D. Matthews, A. Kay, and M. Gratzel, Aust. J. Chem., 47, 1869 (1994). https://doi.org/10.1071/CH9941869
  11. T. Miyasaka and Y. Kijitori, Journal of The Electrochemical Society, 151, 1767 (2004). https://doi.org/10.1149/1.1796931