DOI QR코드

DOI QR Code

The Electrical and Optical Properties of Ga-doped ZnO Films Prepared by Using Facing Target Sputtering System

대향 타겟식 스퍼터링 방법에 의해 성막된 Ga-doped ZnO 박막의 전기 광학적 성질

  • Choi, Myung Gyu (Department of Electronics Engineering, Catholic University of Daegu) ;
  • Bae, Kang (Department of Electronics Engineering, Catholic University of Daegu) ;
  • Seo, Sung-Bo (Department of Electronics Engineering, Catholic University of Daegu) ;
  • Kim, Dong-Young (Department of Electronics Engineering, Catholic University of Daegu) ;
  • Kim, Hwa-Min
  • 최명규 (대구가톨릭대학교 전자공학과) ;
  • 배강 (대구가톨릭대학교 전자공학과) ;
  • 서성보 (대구가톨릭대학교 전자공학과) ;
  • 김동영 (대구가톨릭대학교 전자공학과) ;
  • 김화민 (대구가톨릭대학교 에너지신소재공학과)
  • Received : 2013.03.19
  • Accepted : 2013.04.02
  • Published : 2013.05.01

Abstract

$(Ga_2O_3)_x(ZnO)_{100-x}$ (GZO) films were prepared at room temperature by using a facing target sputtering (FTS) system and their electrical resistivites was investigated as a function of the $Ga_2O_3$ content. The GZO film with an atomic ratio of $Ga_2O_3$ of x= 7 wt.%, shows the lowest resistivity of $7.5{\times}10^{-4}{\Omega}{\cdot}cm$. The GZO films were also prepared at various substrate temperatures from room temperature to $300^{\circ}C$, and their electrical resistivity was found to be improved as the substrate temperature was increased, A very low resistivity of $2.8{\times}10^{-4}{\Omega}{\cdot}cm$ that is almost comparable with that of ITO film was obtained in the GZO films prepared at the substrate temperature of $300^{\circ}C$ by using the FTS.

Keywords

References

  1. K. L. Chopra and D. K. Pandya, Thin Solid Films, 102, 1 (1983). https://doi.org/10.1016/0040-6090(83)90256-0
  2. S. Takada, T. Minami, and H. Nanto, Thin Solid Films, 135, 183 (1986). https://doi.org/10.1016/0040-6090(86)90125-2
  3. Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, R. F. Huang, and L. S. Wen, J. Appl. Phys., 907, 3432 (2001).
  4. K. Tabuchi, W. W. Wenas, A. Yamada, and K. Kakahashi, Jpn. J. Appl. Phys., 132, 3764 (1993).
  5. I. An, Y. Lu, C. R. Wronski, and R. W. Collins, Appl. Phys. Lett., 64, 3317 (1994). https://doi.org/10.1063/1.111295
  6. U. Lamp and J. Muller, Sens. Actuators, 18, 269 (1989). https://doi.org/10.1016/0250-6874(89)87034-9
  7. W. H. G. Horsthuis, Thin Solid Films, 147, 185 (1989).
  8. S. Honda, A. TsuJimoto, M. Watamori, and K. Oura, J. Vac. Sci. Techol., 133, 1100 (1995).
  9. I. Hamberg and C. G. Granqvist, J. Appl. Phys., 60, R123 (1986). https://doi.org/10.1063/1.337534
  10. L. Cminami, H. Nanto, and S. Takada, Jpn. J. Appl. Phys., 23, 1280 (1984).
  11. J. M. Park, J. S. Hong, J. J. Kim, S. H. Park, H. M. Kim, and J. S. Ahn, J. Korean Phys. Soc., 48, 1530 (2006).
  12. J. M. Park, J. J. Kim, H. M. Kim, J. H. Kim, S. W. Ryu, S. H. Park, and J. S. Ahn, J. Korean Phys. Soc., 48, 1624 (2006).
  13. B. G. Choi, J. Epn. Cer. Soc., 25, 2161 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.023
  14. C. A Hubber, T. E. Hubber, M. Sadoqi, L. A. Lubin, S. Manalis, and C. B. Prater, Science, 263, 800 (1994). https://doi.org/10.1126/science.263.5148.800
  15. J. Y. W. Seto, J. Appl. Phys., 46, 5247 (1975). https://doi.org/10.1063/1.321593