DOI QR코드

DOI QR Code

AN IMPROVED BINOMIAL METHOD FOR PRICING ASIAN OPTIONS

  • Received : 2010.08.18
  • Published : 2013.04.30

Abstract

We present an improved binomial method for pricing European- and American-type Asian options based on the arithmetic average of the prices of the underlying asset. At each node of the tree we propose a simple algorithm to choose the representative averages among all the effective averages. Then the backward valuation process and the interpolation are performed to compute the price of the option. The simulation results for European and American Asian options show that the proposed method gives much more accurate price than other recent lattice methods with less computational effort.

Keywords

References

  1. F. Black and M. Sholes, The pricing of options and corporate liabilities, The Journal of Political Economy 81 (1973), no. 3, 637-654. https://doi.org/10.1086/260062
  2. M. Costabile, I. Massabo, and E. Russo, An adjusted binomial model for pricing Asian options, Rev Quant Finan Acc 27 (2006), 285-296. https://doi.org/10.1007/s11156-006-9432-9
  3. J. Cox, S. Ross, and M. Rubinstein, Option pricing: A simplified approach, Journal of Financial Economics 7 (1979), 229-263. https://doi.org/10.1016/0304-405X(79)90015-1
  4. M. Curran, Beyond average intelligence, Risk 5 (1992), no. 10, 60 pages.
  5. P. A. Forsyth, K. R. Vetzal, and R. Zvan, Convergence of numerical methods for valuing path-dependent options using interpolation, Rev Derivatives Res 5 (2002), 273-314. https://doi.org/10.1023/A:1020823700228
  6. P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer-Verlag, New York, 2004.
  7. E. G. Haug, The Complete Guide to Option Pricing Formulas (2nd ed.), McGraw-Hill, 2007.
  8. J. Hull and A. White, Efficient procedures for valuing European and American path-dependent options, Journal of Derivatives 1 (1993), 21-31. https://doi.org/10.3905/jod.1993.407869
  9. A. Kemna and A. Vorst, A pricing method for options based on average asset values, Journal of Banking and Finance 14 (1990), 113-129. https://doi.org/10.1016/0378-4266(90)90039-5
  10. T. R. Klassen, Simple, fast, and flexible pricing of Asian options, Journal of Computational Finance 4 (2001), 89-124. https://doi.org/10.21314/JCF.2001.067
  11. E. Levy, Pricing European average rate currency options, Journal of International Money and Finance 11 (1992), 474-491. https://doi.org/10.1016/0261-5606(92)90013-N
  12. L. C. G. Rogers and Z. Shi, The value of an Asian option, Journal of Applied Probability 32 (1995), 1077-1088. https://doi.org/10.2307/3215221
  13. L. Sankarasubramanian, P. Ritchken, and A. M. Vijh, The valuation of path dependent contracts on the average, Management Science 39 (1991), 1202-1213.
  14. S. M. Turnbull and L. M. Wakeman, A quick algorithm for pricing European average options, Journal of Financial and Quantitative Analysis 26 (1991), 377-389. https://doi.org/10.2307/2331213
  15. T. Vorst, Prices and hedge ratios of average exchange rate options, International Review of Financial Analysis 1 (1992), 179-193. https://doi.org/10.1016/1057-5219(92)90003-M
  16. R. Zvan, P. A. Forsyth, and K. R. Vetzal, Robust numerical methods for pde models of Asian options, Journal of Computational Finance 1 (1998), 39-78.