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AN IMPROVED BINOMIAL METHOD

FOR PRICING ASIAN OPTIONS

Kyoung-Sook Moon and Hongjoong Kim

Abstract. We present an improved binomial method for pricing Euro-

pean- and American-type Asian options based on the arithmetic average
of the prices of the underlying asset. At each node of the tree we propose

a simple algorithm to choose the representative averages among all the
effective averages. Then the backward valuation process and the interpo-

lation are performed to compute the price of the option. The simulation

results for European and American Asian options show that the proposed
method gives much more accurate price than other recent lattice methods

with less computational effort.

1. Introduction

An option is a financial instrument that gives its owner the right, but not
the obligation, to buy or sell a pre-defined asset, called the underlying. By con-
structing a risk-neutral portfolio that replicates the return of holding an option,
Black and Scholes [1] produce a closed-form solution for a European vanilla op-
tion’s price. After derivation of the Black-Scholes equation, there have been
traded many types of options including complex financial structures. Among
them, an Asian option, which was introduced in Tokyo in 1987, is determined
by the average asset price over the pre-defined time period. Because of the
averaging feature, Asian options reduce the risk of market manipulation of
the underlying asset at maturity and also the volatility inherent in the option.
Therefore, Asian options are typically cheaper than European or American op-
tions. In practice, the average can be approximated by an arithmetic average
or a geometric average. The geometric case has an analytic solution using the
lognormal distribution of the underlying asset, see [7, 9]. However, there is no
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closed-form solution for more popular arithmetic average-based Asian option,
and therefore one needs to rely on numerical approximation. There have been
studied various approaches. For analytic approximation, Levy [11], Vorst [15]
and Ritchken et al. [13] calculate the probability density function of the arith-
metic average case using the corresponding geometric average. Turnbull and
Wakeman [14] improve the approximation using Edgeworth expansions. Later
Curran [4] and Rogers and Shi [12] derive approximate formulae and bounds in
the form of single and double integral. Alternatively one may use Monte Carlo
simulation as in [6] or numerical methods for partial differential equation (see
[16]).

However, all these methods cannot be simply applied to American-style
Asian options. Therefore we focus on numerical schemes applicable for pricing
American Asian option, especially binomial tree models. After the introduc-
tion by Cox et al. [3], the binomial method is a very popular method in com-
putational finance due to its ease of implementation and simple application to
American options. However Asian options based on the average of underly-
ing asset prices present a difficult problem, since the number of average prices
grows exponentially as the number of nodes of the tree increases. In order to
solve this shortage of binomial method, Hull and white [8] compute a set of
representative averages at each node. Their work makes the binomial model
feasible for pricing Asian options but it generically suffers the lack of conver-
gence (see [2, 5]). Several modifications of the Hull and White model have been
introduced since then. But some [5, 10, 16] work only for specific cases or do
not clearly specify the way to choose parameter values used in their methods.
Or some [2] requires expensive computational costs such as large memory space
or heavy computation.

This work presents a new binomial method to valuate Asian options effi-
ciently and accurately. The proposed method can be applied to various Euro-
pean or American Asian options and numerical simulations in Section 5 show
that the method computes accurately the price of the option in a simple way.
The outline of the paper is as follows. Section 2 describes Asian option problem
and Section 3 introduces some tree-based approaches for Asian option prices.
Section 4 proposes a new binomial method for pricing Asian options and nu-
merical experiments in Section 5 illustrates the efficiency and accuracy of the
new method. A summary and some concluding remarks are given in Section 6.

2. Asian option problem

Let us consider the price of the underlying asset as a stochastic process
{St}t∈[0,T ] on a suitable probability space (Ω,F ,P). Under risk neutral model,
the evolution of the underlying is assumed to satisfy the stochastic differential
equation:

(1) dS(t) = rSdt+ σSdW (t), 0 < t < T,
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where r is a riskless interest rate, σ is a volatility, T is an expiration date, and
W (t) is a Brownian motion. Under the conventional assumptions of frictionless
markets, the price of option can be computed by the conditional expectation
of the discounted payoff,

(2) V (s, t) = e−r(T−t)E[Λ(S(T ), T )|S(t) = s],

where Λ(S(T ), T ) denotes the payoff function at expiration date T . For in-
stance, the payoff of Asian call option (or average rate option) based on the
arithmetic average of the underlying asset prices is

(3) max

(
1

T

∫ T

0

S(τ)dτ −K, 0

)
,

whereK is a pre-defined exercise price. Here one obtains a discrete Asian option

by replacing the continuous average 1
T

∫ T

0
S(τ)dτ by an arithmetic average

1
N

∑N
i=0 S(ti) over N + 1 time points 0 = t0 < t1 < · · · < tN = T .

The binomial method by Cox et al. [3] assumes that the asset price S(tn) at

t = tn moves either up to uS(tn) for u = exp(σ
√

∆t) > 1 or down to dS(tn) =
S(tn)/u for ∆t = tn+1 − tn for n = 0, 1, . . . , N − 1 with probabilities p =
(exp(r∆t)−d)/(u−d) or 1−p, respectively. Then the standard binomial method
calculates the payoffs of the option at expiry, V (S(tN ), tN ) = Λ(S(tN ), tN ), and
computes the option price V (S(0), 0) by backward averaging,

(4) V (S(tn), tn) = e−r∆t(p V (S(tn+1), tn+1) + (1− p) V (S(tn+1), tn+1)),

where n = N − 1, N − 2, . . . , 0. Since the number of averages prices grows
exponentially as the number of time steps N increases, the standard binomial
method by Cox et al. [3] cannot be applied directly for pricing Asian options.

3. Binomial methods for Asian options

A forerunner of the binomial method for pricing Asian option is the one
proposed by Hull and White [8], which considers a fixed strike European Asian
call option based on the arithmetic average of the underling asset prices. The
arithmetic average is calculated on N + 1 asset prices during the option’s life
with the time step ∆t = T/N and N is the number of time steps used to
measure the price. Their model assumes that the price of the underlying evolves
according to the CRR model by Cox et al. [3]. Let (i, j) denote the node
of the tree after j upward movements and i − j downward movements and
S(i, j) denote the price of the underlying asset at (i, j) with S(0, 0) = S.
In a binomial method, the main obstacle for pricing an Asian option is the
exponential increase of the number of possible payoffs. In order to solve this,
Hull and White consider a finite set of representative averages at each node.
The minimum and the maximum representative averages at time i∆t, Amin(i)
and Amax(i) respectively, are of the form Se±mh, where h is a fixed parameter
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and m is the smallest integer such that

Amin(i) = Se−mh ≤ 1

i+ 1
(iAmin(i− 1) + dS(i− 1, 0)) ,

Amax(i) = Semh ≥ 1

i+ 1
(iAmax(i− 1) + uS(i− 1, i− 1)) .

Once m is found, the other representative averages at each node (i, ·) at time
i∆t are of the form Sekh where k ∈ {−m+1,−m+2, . . . ,m−1}. Let A(i, j, k)
be the kth representative average at the node (i, j). Then the option price
C(i, j, k) corresponding to A(i, j, k) is computed by the backward induction,

C(i, j, k) = e−r∆t (pC(i+ 1, j + 1, ku) + (1− p)C(i+ 1, j, kd)) ,

where C(i + 1, j + 1, ku) and C(i + 1, j, kd) are option values corresponding
to ((i+ 1)A(i, j, k) + uS(i, j))/(i+ 2) and ((i+ 1)A(i, j, k) + dS(i, j))/(i+ 2),
respectively. C(i+1, j+1, ku) is computed by the linear interpolation between
two option prices corresponding to the smallest representative average greater
than ((i+1)A(i, j, k)+uS(i, j))/(i+2) and the greatest representative average
smaller than ((i + 1)A(i, j, k) + dS(i, j))/(i + 2). A similar interpolation is
applied to find C(i+ 1, j, kd). But, there are two weaknesses with this method.
One is with the choice of the parameter h. The value of h decides the number of
representative values at each node and the numerical results by Hull and White
show the declining pattern of the option price as h decreases, which results
from the linear interpolation that overestimates the option prices. According to
Hull and White, such an overestimation effect should disappear asymptotically.
Secondly, the numerical results show that for a given h the option value is an
increasing function of the number of time steps. That is, by increasing the
number of time steps, the option value just increases (i.e., diverges). This lack
of convergence is confirmed by Forsyth et al. [5] who showed that h should
be proportional to ∆t in order to obtain convergence. Hull and White, on
the other hand, use fixed values of h, which leads to the increasing pattern of
option values.

Forsyth et al. [5] improve the model of Hull and White by choosing h as

h =
ασ2∆t

2
√
T
,

where α is a parameter. This α does a critical role in their model because it
determines the number of representative averages to be found at each node.
The results of Forsyth et al. present more stable convergence and accurate
prices than those of Hull and White, but no theoretical rule is specified on
how to choose the values of some parameters such as this critical parameter
α. In addition, the amount of computation of their model grows rapidly as N
increases because h is proportional to N . In [2], Costabile et al. provide an-
other efficient lattice model for pricing European and American Asian options
based on the model of Hull and White. Their scheme can be applied to many
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European and American Asian options but the required computational cost is
expensive as will be explained in detain in Section 4.

4. Proposed binomial method

Let us introduce a modified binomial method for pricing European- and
American-type Asian options based on the arithmetic average of the underlying
asset prices. When the standard lattice method by Cox et al. [3] is used for
the Asian option, each path of the asset prices generates a different average
price so that the number of whole average values increases exponentially in
N , the number of time steps. Let ni,j denote the node of the tree after i
upward movements and j downward movements. The set of the representative
averages at ni,j is obtained by following steps. First, we compute the maximum
and minimum average values from the initial node n0,0 to ni,j , a

max
i,j and amin

i,j ,
respectively. amax

i,j is the average of the asset prices along the trajectory of i
initial upward movements followed by j downward movements,

amax
i,j =

1

i+ j + 1

(
S(ui+1 − 1)

u− 1
+
Suid(1− dj)

1− d

)
and amin

i,j is the average along the trajectory of j initial downward movements
followed by i upward movements,

amin
i,j =

1

i+ j + 1

(
S(1− dj+1)

1− d
+
Sudj(ui − 1)

u− 1

)
.

Then representative averages aki,j for the node ni,j are computed by

(5) aki,j = amin
i,j +

k

ij

(
amax
i,j − amin

i,j

)
, k = 0, 1, . . . , ij.

In [2], Costabile et al. estimated representative averages in a different way.
They first considered the price path τ0

i,j , which results in amax
i,j and set amax

i,j to

be the first representative average A(i, j, 0). Then kth price path τki,j is obtained
recursively by replacing the highest asset price, say Smax, appearing in the
previous path τk−1

i,j by Smaxd2, k = 1, . . . , ij, and kth representative average

A(i, j, k) is obtained by the average asset price along τki,j . Their algorithm
needs to store all the path information and requires a procedure to search
and replace the maximum asset price. Thus, the computational cost for their
approach becomes expensive for a large lattice. The proposed method, on the
other hand, uses the equation (5) to derive the representative averages, which
does not require any memory storage for asset prices along each path and
expedites the computation by avoiding search and replace step.

Once the representative averages at T = N∆t are obtained, the payoff, for
example, for the European Asian call option is optioned by

(6) Λk
i,N−i = max{aki,N−i −K, 0}
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for k = 0, 1, . . . , i(N − i), i = 0, 1, . . . , N and is denoted by cki,N−i Then the
backward induction procedure is performed,

(7) cki,j = exp−r∆t
(
pck,up

i+1,j + (1− p)ck,down
i,j+1

)
,

where ck,up
i+1,j and ck,down

i,j+1 are option prices corresponding to

ak,up
i+1,j =

1

i+ j + 2

(
(i+ j + 1)aki,j + Sui+1dj

)
and

ak,down
i,j+1 =

1

i+ j + 2

(
(i+ j + 1)aki,j + Suidj+1

)
,

respectively. The representative averages aki+1,j at node ni+1,j at time (i +

j + 1)∆t may not coincide with ak,up
i+1,j . In order to overcome this problem,

we compute ck,up
i+1,j by using the linear interpolation between two option prices

corresponding to representative averages closest to ak,up
i+1,j as proposed in [8]. A

similar procedure is applied to derive ck,down
i,j+1 .

When the early exercise is allowed as in, for example, an American Asian
call option, the option price at the node ni,j is obtained by

(8) cki,j = max{exp−r∆t
(
pck,up

i+1,j + (1− p)ck,down
i,j+1

)
, aki,j −K}.

A similar comparison is performed for the put option.

5. Numerical results

We present the computational results of the proposed scheme for European-
and American-type Asian options based on the arithmetic average of the un-
derlying asset price.

5.1. European Asian options

The simulation results of the proposed scheme for the European Asian call
options with the initial asset price S = 100, strike price K = 100 and risk-free
interest rate r = 0.1 are compared with those from the schemes by Costa-
bile et al. [2] and Forsyth et al. [5], where the prices of [5] are assumed to be
(expected) exact option prices as in [2]. Two sets of parameters for the option
are considered, one with a volatility of σ = 0.1 and time to maturity T = 0.25
(years) and the other with σ = 0.5 and T = 5. Table 1 compares the numerical
results for various numbers of time steps, which shows the proposed scheme
results in slightly faster convergence.
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Table 1. Option prices for European Asian options from the
proposed method and the schemes by Costabile et al. and
Forsyth et al.

σ = 0.1, T = 0.25 σ = 0.5, T = 5

N Costabile Proposed Costabile Proposed

10 1.8381 1.8388 28.3491 28.4788

20 1.8442 1.8451 28.2439 28.4161
30 1.8466 1.8473 28.3478 28.4061

40 1.8475 1.8483 28.3866 28.4052

50 1.8485 1.8488 28.3899 28.4063
60 1.8490 1.8492 28.3920 28.4074

70 1.8492 1.8496 26.8899 28.4080

80 1.8497 1.8498 28.3934 28.4098
90 1.8499 1.8500 28.3875 28.4121

Forsyth 1.8509 28.4003

Figure 1 compares the schemes when the volatility of σ = 0.5 and time to
maturity T = 5 (years). The figure also shows that the proposed scheme gives
smoother and faster convergence than the method by Costabile et al.
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Figure 1. Option prices for European Asian options from
the proposed method and the schemes by Costabile et al. and
Forsyth et al. when σ = 0.5, T = 5.

5.2. American Asian options

For the American Asian options, the proposed scheme is compared with the
schemes by Costabile et al. [2], Zvan et al. [16] and Klassen [10], where the
prices of [16] and [10] are assumed to be (expected) exact option prices as in
[2]. Zvan et al. used a numerical scheme based on the Crank-Nicolson method
with flux limiter while Klassen implemented a binomial method with 512 time
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steps with Richardson extrapolation. Table 2 presents computational results
for American Asian call options with S = 100, r = 0.1, σ = 0.4, T = 1 when
the strike price K and the number of time steps N are varied. The model by
Costabile et al. shows slower convergence for pricing American Asian options
and thus requires a large number of time steps to achieve convergence, while
the proposed method does not.

Table 2. Option prices for American Asian options with S =
100, r = 0.1, σ = 0.4, T = 1 from the proposed method and
the schemes by Costabile et al., Zvan et al. and Klassen.

K = 95 K = 100 K = 105

N Costabile Proposed Costabile Proposed Costabile Proposed

10 14.6269 14.6711 11.6977 11.7606 9.2388 9.2846

20 14.6204 15.0967 11.5531 12.0311 9.0188 9.4988
30 15.2235 15.2698 12.1183 12.1611 9.5461 9.5861

40 15.2471 15.3639 12.1449 12.2316 9.5527 9.6363
50 15.4162 15.4309 12.2652 12.2767 9.6597 9.6685

60 15.4655 15.4781 12.3000 12.3093 9.6847 9.6914

70 15.4976 15.5133 12.3206 12.3334 9.6979 9.7085
80 15.5317 15.5405 12.3461 12.3523 9.7176 9.7220

Zvan 15.749 12.497 9.825

Klassen 15.7747 12.5094 9.8305

Figure 2 compares the methods when K = 100. As explained above, the
proposed method results in smoother and faster convergence than that from
Costabile et al.
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Figure 2. Option prices for American Asian options from
the proposed method and the schemes by Costabile et al.,
Zvan et al. and Klassen when S = 100, r = 0.1, σ = 0.4, T =
1, K = 100.
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Table 3 shows the results of the American Asian options with S = 100, r =
0.1, σ = 0.2, T = 0.25.

Table 3. Option prices for American Asian options with S =
100, r = 0.1, σ = 0.2, T = 0.25 from the proposed method
and the schemes by Costabile et al., Zvan et al. and Klassen.

K = 95 K = 100 K = 105

N Costabile Proposed Costabile Proposed Costabile Proposed

10 6.9386 6.9401 3.0378 3.0421 0.9169 0.9211

20 7.1302 7.1328 3.1035 3.1079 0.9478 0.9504
30 7.2144 7.2168 3.1343 3.1372 0.9599 0.9616

40 7.2626 7.2646 3.1510 3.1532 0.9664 0.9675

50 7.2951 7.2967 3.1620 3.1638 0.9705 0.9712
60 7.3180 7.3195 3.1697 3.1712 0.9732 0.9738

70 7.3347 7.3361 3.1754 3.1766 0.9753 0.9757

80 7.3484 7.3497 3.1799 3.1810 0.9768 0.9771
Zvan 7.521 3.224 1.009

Klassen 7.4660 3.2159 0.9882

6. Conclusions

A binomial method for pricing Asian options is derived from the model
of Hull and White. The algorithm of the proposed model is simple in the
sense that it does not require large memory space nor heavy computation. The
method can be applied to various types of European or American Asian options
and all the parameter values can be easily derived from the Hull and White
model. Algorithms to compute Greeks such as Delta or Gamma for Asian
options will be derived in the future work.
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